@article{SIGMA_2014_10_a55,
author = {Alina Dobrogowska and Anatol Odzijewicz},
title = {Integrable {Systems} {Related} to {Deformed} $\mathfrak{so}(5)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a55/}
}
Alina Dobrogowska; Anatol Odzijewicz. Integrable Systems Related to Deformed $\mathfrak{so}(5)$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a55/
[1] Adler M., van Moerbeke P., Vanhaecke P., Algebraic integrability, {P}ainlevé geometry and {L}ie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer-Verlag, Berlin, 2004 | DOI | Zbl
[2] Bolsinov A. V., Borisov A. V., “Compatible {P}oisson brackets on {L}ie algebras”, Math. Notes, 72 (2002), 10–30 | DOI | MR | Zbl
[3] Borisov A. V., Mamaev I. S., Poisson structures and Lie algebras in Hamiltonian mechanics, Udmurtskii Universitet, Izhevsk, 1999 | MR | Zbl
[4] Butcher P. N., Cotter D., The elements of nonlinear optics, Cambridge University Press, Cambridge, 1990
[5] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[6] Dobrogowska A., Odzijewicz A., “Integrable relativistic systems given by {H}amiltonians with momentum-spin-orbit coupling”, Regul. Chaotic Dyn., 17 (2012), 492–505, arXiv: 1106.4480 | DOI | MR | Zbl
[7] Dobrogowska A., Ratiu T. S., “Integrable systems of Neumann type”, J. Dynam. Differential Equations (to appear) | DOI
[8] Griffiths P., Harris J., Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978 | MR | Zbl
[9] Holm D. D., Geometric mechanics, v. I, Dynamics and symmetry, 2nd ed., Imperial College Press, London, 2011 | MR
[10] Komarov I. V., Sokolov V. V., Tsiganov A. V., “Poisson maps and integrable deformations of the {K}owalevski top”, J. Phys. A: Math. Gen., 36 (2003), 8035–8048, arXiv: nlin.SI/0304033 | DOI | MR | Zbl
[11] Libermann P., Marle C.-M., Symplectic geometry and analytical mechanics, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987 | DOI | MR | Zbl
[12] Magri F., “A simple model of the integrable {H}amiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[13] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems ({L}ecce, 1979), Lecture Notes in Phys., 120, Springer, Berlin–New York, 1980, 233–263 | DOI | MR
[14] Mishchenko A. S., Vector bundles and their applications, Nauka, M., 1984 | MR
[15] Odzijewicz A., Dobrogowska A., “Integrable {H}amiltonian systems related to the {H}ilbert–{S}chmidt ideal”, J. Geom. Phys., 61 (2011), 1426–1445, arXiv: 1004.3955 | DOI | MR | Zbl
[16] Odzijewicz A., Goliński T., “Hierarchy of integrable {H}amiltonians describing the nonlinear {$n$}-wave interaction”, J. Phys. A: Math. Theor., 45 (2012), 045204, 14 pp., arXiv: 1106.3217 | DOI | MR | Zbl
[17] Perelomov A. M., Integrable systems of classical mechanics and {L}ie algebras, v. I, Birkhäuser Verlag, Basel, 1990 | DOI | MR | Zbl
[18] Sokolov V. V., Wolf T., “Integrable quadratic classical {H}amiltonians on {${\rm so}(4)$} and {${\rm so}(3,1)$}”, J. Phys. A: Math. Gen., 39 (2006), 1915–1926, arXiv: nlin.SI/0405066 | DOI | MR | Zbl
[19] Trofimov V. V., Fomenko A. T., Algebra and geometry of integrable Hamiltonian differential equations, Faktorial, M., 1995 | MR | Zbl
[20] Tsiganov A. V., “Compatible {L}ie–{P}oisson brackets on the {L}ie algebras {${\rm e}(3)$} and {${\rm so}(4)$}”, Theoret. and Math. Phys., 151 (2007), 459–473 | DOI | MR
[21] Tsiganov A. V., “On bi-{H}amiltonian structure of some integrable systems on {${\rm so}^*(4)$}”, J. Nonlinear Math. Phys., 15 (2008), 171–185, arXiv: nlin.SI/0703062 | DOI | MR | Zbl