Ordered $*$-Semigroups and a $C^*$-Correspondence for a Partial Isometry
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Certain $*$-semigroups are associated with the universal $C^*$-algebra generated by a partial isometry, which is itself the universal $C^*$-algebra of a $*$-semigroup. A fundamental role for a $*$-structure on a semigroup is emphasized, and ordered and matricially ordered $*$-semigroups are introduced, along with their universal $C^*$-algebras. The universal $C^*$-algebra generated by a partial isometry is isomorphic to a relative Cuntz–Pimsner $C^*$-algebra of a $C^*$-correspondence over the $C^*$-algebra of a matricially ordered $*$-semigroup. One may view the $C^*$-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered $*$-semigroup.
Keywords: $C^*$-algebras; partial isometry; $*$-semigroup; partial order; matricial order; completely positive maps; $C^*$-correspondence; Schwarz inequality; exact $C^*$-algebra.
@article{SIGMA_2014_10_a54,
     author = {Berndt Brenken},
     title = {Ordered $*${-Semigroups} and a~$C^*${-Correspondence} for {a~Partial} {Isometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a54/}
}
TY  - JOUR
AU  - Berndt Brenken
TI  - Ordered $*$-Semigroups and a $C^*$-Correspondence for a Partial Isometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a54/
LA  - en
ID  - SIGMA_2014_10_a54
ER  - 
%0 Journal Article
%A Berndt Brenken
%T Ordered $*$-Semigroups and a $C^*$-Correspondence for a Partial Isometry
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a54/
%G en
%F SIGMA_2014_10_a54
Berndt Brenken. Ordered $*$-Semigroups and a $C^*$-Correspondence for a Partial Isometry. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a54/

[1] Abadie B., Eilers S., Exel R., “Morita equivalence for crossed products by {H}ilbert {$C^*$}-bimodules”, Trans. Amer. Math. Soc., 350 (1998), 3043–3054 | DOI | MR | Zbl

[2] Arveson W., Noncommutative dynamics and {$E$}-semigroups, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003 | DOI | MR | Zbl

[3] Barnes B. A., Duncan J., “The {B}anach algebra {$l^{1}(S)$}”, J. Funct. Anal., 18 (1975), 96–113 | DOI | MR | Zbl

[4] Brenken B., “Topological quivers as multiplicity free relations”, Math. Scand., 106 (2010), 217–242 | MR | Zbl

[5] Brenken B., Niu Z., “The {$C^*$}-algebra of a partial isometry”, Proc. Amer. Math. Soc., 140 (2012), 199–206 | DOI | MR | Zbl

[6] Brown N. P., Ozawa N., {$C^*$}-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[7] Conway J. B., Duncan J., Paterson A. L. T., “Monogenic inverse semigroups and their {$C^\ast$}-algebras”, Proc. Roy. Soc. Edinburgh Sect. A, 98 (1984), 13–24 | DOI | MR | Zbl

[8] Dales H. G., Lau A. T. M., Strauss D., Banach algebras on semigroups and on their compactifications, Mem. Amer. Math. Soc., 205, 2010, vi+165 pp. | DOI | MR

[9] Duncan J., Paterson A. L. T., “{$C^\ast$}-algebras of inverse semigroups”, Proc. Edinburgh Math. Soc., 28 (1985), 41–58 | DOI | MR | Zbl

[10] Dykema K. J., Shlyakhtenko D., “Exactness of {C}untz–{P}imsner {$C^*$}-algebras”, Proc. Edinb. Math. Soc., 44 (2001), 425–444, arXiv: math.OA/9911002 | DOI | MR | Zbl

[11] Fell J. M. G., Doran R. S., Representations of {$*$}-algebras, locally compact groups, and {B}anach {$*$}-algebraic bundles, v. 1, Pure and Applied Mathematics, 125, Basic representation theory of groups and algebras, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[12] Fell J. M. G., Doran R. S., Representations of {$*$}-algebras, locally compact groups, and {B}anach {$*$}-algebraic bundles, v. 2, Pure and Applied Mathematics, 126, Banach $*$-algebraic bundles, induced representations, and the generalized Mackey analysis, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl

[13] Fowler N. J., Muhly P. S., Raeburn I., “Representations of {C}untz–{P}imsner algebras”, Indiana Univ. Math. J., 52 (2003), 569–605 | DOI | MR | Zbl

[14] Howie J. M., An introduction to semigroup theory, Academic Press, London–New York, 1976 | MR | Zbl

[15] Katsura T., “On {$C^*$}-algebras associated with {$C^*$}-correspondences”, J. Funct. Anal., 217 (2004), 366–401, arXiv: math.OA/0309088 | DOI | MR | Zbl

[16] Lance E. C., Hilbert {$C^*$}-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[17] Li X., “Semigroup {$C^*$}-algebras and amenability of semigroups”, J. Funct. Anal., 262 (2012), 4302–4340, arXiv: 1105.5539 | DOI | MR | Zbl

[18] Muhly P. S., Solel B., “Tensor algebras over {$C^*$}-correspondences: representations, dilations, and {$C^*$}-envelopes”, J. Funct. Anal., 158 (1998), 389–457 | DOI | MR | Zbl

[19] Paulsen V., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[20] Pimsner M. V., “A class of {$C^*$}-algebras generalizing both {C}untz–{K}rieger algebras and crossed products by {${\mathbb Z}$}”, Free Probability Theory ({W}aterloo, {ON}, 1995), Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997, 189–212 | MR | Zbl