Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive particles with spin 0, $\frac12$ and 1 in the deformed theory. We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein–Gordon, Dirac and Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.
Keywords: relativistic wave equations; quantum groups; curved momentum space; non-commutative spacetime.
@article{SIGMA_2014_10_a52,
     author = {Bernd J. Schroers and Matthias Wilhelm},
     title = {Towards {Non-Commutative} {Deformations} of {Relativistic} {Wave} {Equations} in 2+1 {Dimensions}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a52/}
}
TY  - JOUR
AU  - Bernd J. Schroers
AU  - Matthias Wilhelm
TI  - Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a52/
LA  - en
ID  - SIGMA_2014_10_a52
ER  - 
%0 Journal Article
%A Bernd J. Schroers
%A Matthias Wilhelm
%T Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a52/
%G en
%F SIGMA_2014_10_a52
Bernd J. Schroers; Matthias Wilhelm. Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a52/

[1] Achúcarro A., Townsend P. K., “A {C}hern–{S}imons action for three-dimensional anti-de {S}itter supergravity theories”, Phys. Lett. B, 180 (1986), 89–92 | DOI | MR

[2] Amelino-Camelia G., “Doubly-special relativity: facts, myths and some key open issues”, Symmetry, 2 (2010), 230–271, arXiv: 1003.3942 | DOI | MR

[3] Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., “The principle of relative locality”, Phys. Rev. D, 84 (2011), 084010, 13 pp., arXiv: 1101.0931 | DOI

[4] Arzano M., Latini D., Lotito M., Group momentum space and Hopf algebra symmetries of point particles coupled to 2+1 gravity, arXiv: 1403.3038

[5] Atiyah M. F., Moore G. W., A shifted view of fundamental physics, arXiv: 1009.3176 | MR

[6] Bais F. A., Muller N. M., “Topological field theory and the quantum double of {${\rm SU}(2)$}”, Nuclear Phys. B, 530 (1998), 349–400, arXiv: hep-th/9804130 | DOI | MR | Zbl

[7] Bais F. A., Muller N. M., Schroers B. J., “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45, arXiv: hep-th/0205021 | DOI | MR | Zbl

[8] Barut A. O., Ra̧czka R., Theory of group representations and applications, 2nd ed., World Scientific Publishing Co., Singapore, 1986 | DOI | MR | Zbl

[9] Batista E., Majid S., “Noncommutative geometry of angular momentum space {${\rm U}(\mathfrak{su}(2))$}”, J. Math. Phys., 44 (2003), 107–137, arXiv: hep-th/0205128 | DOI | MR | Zbl

[10] Binegar B., “Relativistic field theories in three dimensions”, J. Math. Phys., 23 (1982), 1511–1517 | DOI | MR

[11] Born M., “A suggestion for unifying quantum theory and relativity”, Proc. R. Soc. Lond. Ser. A, 165 (1938), 291–303 | DOI

[12] de Sousa Gerbert P., “On spin and (quantum) gravity in 2+1 dimensions”, Nuclear Phys. B, 346 (1990), 440–472 | DOI | MR

[13] Drinfel'd V. G., “Quantum groups”, Proceedings of the {I}nternational {C}ongress of {M}athematicians ({B}erkeley, {C}alif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[14] Dupuis M., Girelli F., Livine E., “Spinors and Voros star-product for group field theory: first contact”, Phys. Rev. D, 86 (2012), 105034, 5 pp., arXiv: 1107.5693 | DOI

[15] Freidel L., Livine E. R., “3{D} quantum gravity and effective noncommutative quantum field theory”, Phys. Rev. Lett., 96 (2006), 221301, 4 pp., arXiv: hep-th/0512113 | DOI | MR | Zbl

[16] Freidel L., Livine E. R., “Ponzano–{R}egge model revisited. {III}: {F}eynman diagrams and effective field theory”, Classical Quantum Gravity, 23 (2006), 2021–2061, arXiv: hep-th/0502106 | DOI | MR | Zbl

[17] Freidel L., Majid S., “Noncommutative harmonic analysis, sampling theory and the {D}uflo map in 2+1 quantum gravity”, Classical Quantum Gravity, 25 (2008), 045006, 37 pp., arXiv: hep-th/0601004 | DOI | MR | Zbl

[18] Gitman D. M., Shelepin A. L., “Poincaré group and relativistic wave equations in 2+1 dimensions”, J. Phys. A: Math. Gen., 30 (1997), 6093–6121 | DOI | MR | Zbl

[19] Grigore D. R., “The projective unitary irreducible representations of the {P}oincaré group in 1+2 dimensions”, J. Math. Phys., 34 (1993), 4172–4189, arXiv: hep-th/9304142 | DOI | MR | Zbl

[20] Guedes C., Oriti D., Raasakka M., “Quantization maps, algebra representation, and non-commutative {F}ourier transform for {L}ie groups”, J. Math. Phys., 54 (2013), 083508, 31 pp., arXiv: 1301.7750 | DOI | MR | Zbl

[21] Imai S., Sasakura N., “Scalar field theories in a Lorentz-invariant three-dimensional noncommutative space-time”, J. High Energy Phys., 2000:9 (2000), 032, 23 pp., arXiv: hep-th/0005178 | DOI | MR | Zbl

[22] Jackiw R., Nair V. P., “Relativistic wave equation for anyons”, Phys. Rev. D, 43 (1991), 1933–1942 | DOI | MR

[23] Joung E., Mourad J., Noui K., “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys., 50 (2009), 052503, 29 pp., arXiv: 0806.4121 | DOI | MR | Zbl

[24] Kempf A., Majid S., “Algebraic {$q$}-integration and {F}ourier theory on quantum and braided spaces”, J. Math. Phys., 35 (1994), 6802–6837, arXiv: hep-th/9402037 | DOI | MR | Zbl

[25] Knapp A. W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, 36, Princeton University Press, Princeton, NJ, 1986 | MR | Zbl

[26] Koornwinder T. H., Muller N. M., “The quantum double of a (locally) compact group”, J. Lie Theory, 7 (1997), 101–120, arXiv: q-alg/9712042 | MR | Zbl

[27] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR

[28] Majid S., Noncommutative-geometric groups by a bicrossproduct construction: {H}opf algebras at the {P}lanck scale, Ph.D. Thesis, Harvard University, 1988

[29] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[30] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl

[31] Majid S., Schroers B. J., “{$q$}-deformation and semidualization in 3{D} quantum gravity”, J. Phys. A: Math. Theor., 42 (2009), 425402, 40 pp., arXiv: 0806.2587 | DOI | MR | Zbl

[32] Matschull H. J., Welling M., “Quantum mechanics of a point particle in (2+1)-dimensional gravity”, Classical Quantum Gravity, 15 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl

[33] Meusburger C., Schroers B. J., “Poisson structure and symmetry in the {C}hern–{S}imons formulation of (2+1)-dimensional gravity”, Classical Quantum Gravity, 20 (2003), 2193–2233, arXiv: gr-qc/0301108 | DOI | MR | Zbl

[34] Meusburger C., Schroers B. J., “The quantisation of {P}oisson structures arising in {C}hern–{S}imons theory with gauge group {$G\ltimes{\mathfrak g}^*$}”, Adv. Theor. Math. Phys., 7 (2003), 1003–1043, arXiv: hep-th/0310218 | DOI | MR

[35] Meusburger C., Schroers B. J., “Quaternionic and {P}oisson–{L}ie structures in three-dimensional gravity: the cosmological constant as deformation parameter”, J. Math. Phys., 49 (2008), 083510, 27 pp., arXiv: 0708.1507 | DOI | MR | Zbl

[36] Raasakka M., Group Fourier transform and the phase space path integral for finite dimensional Lie groups, arXiv: 1111.6481

[37] Sasai Y., Sasakura N., “Domain wall solitons and {H}opf algebraic translational symmetries in noncommutative field theories”, Internat. J. Modern Phys. A, 23 (2008), 2277–2278, arXiv: 0711.3059 | DOI | MR

[38] Sasai Y., Sasakura N., “The {C}utkosky rule of three dimensional noncommutative field theory in {L}ie algebraic noncommutative spacetime”, J. High Energy Phys., 2009:6 (2009), 013, 22 pp., arXiv: 0902.3050 | DOI | MR

[39] Sasai Y., Sasakura N., Massive particles coupled with 2+1 dimensional gravity and noncommutative field theory, arXiv: 0902.3502

[40] Schroers B. J., “Combinatorial quantisation of Euclidean gravity in three dimensions”, Quantization of Singular Symplectic Quotients, Progress in Mathematics, 198, eds. N. P. Landsman, M. Pflaum, M. Schlichenmaier, Birkhäuser Verlag, Basel, 2001, 307–328, arXiv: math.QA/0006228 | DOI | MR

[41] Schroers B. J., “Quantum gravity and non-commutative spacetimes in three dimensions: a unified approach”, Acta Phys. Polon. B Proc. Suppl., 4 (2011), 379–402, arXiv: 1105.3945 | DOI

[42] Snyder H. S., “Quantized space-time”, Phys. Rev., 71 (1947), 38–41 | DOI | MR | Zbl

[43] Sternberg S., Group theory and physics, Cambridge University Press, Cambridge, 1994 | MR

[44] 't Hooft G., “Quantization of point particles in (2+1)-dimensional gravity and spacetime discreteness”, Classical Quantum Gravity, 13 (1996), 1023–1039, arXiv: gr-qc/9601014 | DOI | MR | Zbl

[45] Witten E., “2+1-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl