Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the full quantum algebra, the corresponding Poisson–Lie structure and the associated quantum spacetime for a family of quantum deformations of the isometry algebras of the (2+1)-dimensional anti-de Sitter (AdS), de Sitter (dS) and Minkowski spaces. These deformations correspond to a Drinfel'd double structure on the isometry algebras that are motivated by their role in (2+1)-gravity. The construction includes the cosmological constant $\Lambda$ as a deformation parameter, which allows one to treat these cases in a common framework and to obtain a twisted version of both space- and time-like $\kappa$-AdS and dS quantum algebras; their flat limit $\Lambda\to 0$ leads to a twisted quantum Poincaré algebra. The resulting non-commutative spacetime is a nonlinear $\Lambda$-deformation of the $\kappa$-Minkowski one plus an additional contribution generated by the twist. For the AdS case, we relate this quantum deformation to two copies of the standard (Drinfel'd–Jimbo) quantum deformation of the Lorentz group in three dimensions, which allows one to determine the impact of the twist.
Keywords: (2+1)-gravity; deformation; non-commutative spacetime; anti-de Sitter; cosmological constant; quantum groups; Poisson–Lie groups; contraction.
@article{SIGMA_2014_10_a51,
     author = {\'Angel Ballesteros and Francisco J. Herranz and Catherine Meusburger and Pedro Naranjo},
     title = {Twisted (2+1) $\kappa${-AdS} {Algebra,} {Drinfel'd} {Doubles} and {Non-Commutative} {Spacetimes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/}
}
TY  - JOUR
AU  - Ángel Ballesteros
AU  - Francisco J. Herranz
AU  - Catherine Meusburger
AU  - Pedro Naranjo
TI  - Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/
LA  - en
ID  - SIGMA_2014_10_a51
ER  - 
%0 Journal Article
%A Ángel Ballesteros
%A Francisco J. Herranz
%A Catherine Meusburger
%A Pedro Naranjo
%T Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/
%G en
%F SIGMA_2014_10_a51
Ángel Ballesteros; Francisco J. Herranz; Catherine Meusburger; Pedro Naranjo. Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/

[1] Amelino-Camelia G., “Doubly-special relativity: first results and key open problems”, Internat. J. Modern Phys. D, 11 (2002), 1643–1669, arXiv: gr-qc/0210063 | DOI | MR | Zbl

[2] Amelino-Camelia G., “Quantum-spacetime phenomenology”, Living Rev. Relativity, 16 (2013), 5, 137 pp., arXiv: 0806.0339 | DOI | MR

[3] Amelino-Camelia G., Smolin L., Starodubtsev A., “Quantum symmetry, the cosmological constant and {P}lanck-scale phenomenology”, Classical Quantum Gravity, 21 (2004), 3095–3110, arXiv: hep-th/0306134 | DOI | MR | Zbl

[4] Arratia O., Herranz F. J., del Olmo M. A., “Bicrossproduct structure of the null-plane quantum {P}oincaré algebra”, J. Phys. A: Math. Gen., 31 (1998), L1–L7, arXiv: q-alg/9707025 | DOI | MR | Zbl

[5] Bacry H., Lévy-Leblond J. M., “Possible kinematics”, J. Math. Phys., 9 (1968), 1605–1614 | DOI | MR | Zbl

[6] Bais F. A., Müller N. M., “Topological field theory and the quantum double of {${\rm SU}(2)$}”, Nuclear Phys. B, 530 (1998), 349–400, arXiv: hep-th/9804130 | DOI | MR | Zbl

[7] Bais F. A., Müller N. M., Schroers B. J., “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45, arXiv: hep-th/0205021 | DOI | MR | Zbl

[8] Ballesteros Á., Bruno N. R., Herranz F. J., “A new ‘doubly special relativity’ theory from a quantum {W}eyl–{P}oincaré algebra”, J. Phys. A: Math. Gen., 36 (2003), 10493–10503, arXiv: hep-th/0305033 | DOI | MR | Zbl

[9] Ballesteros Á., Bruno N. R., Herranz F. J., “A non-commutative {M}inkowskian spacetime from a quantum {A}d{S} algebra”, Phys. Lett. B, 574 (2003), 276–282, arXiv: hep-th/0306089 | DOI | MR | Zbl

[10] Ballesteros Á., Bruno N. R., Herranz F. J., Non-commutative relativistic spacetimes and worldlines from 2+1 quantum (anti)de Sitter groups, arXiv: hep-th/0401244

[11] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Four-dimensional quantum affine algebras and space-time {$q$}-symmetries”, J. Math. Phys., 35 (1994), 4928–4940, arXiv: hep-th/9310140 | DOI | MR | Zbl

[12] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Quantum (2+1) kinematical algebras: a global approach”, J. Phys. A: Math. Gen., 27 (1994), 1283–1297 | DOI | MR | Zbl

[13] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “A new “null-plane” quantum {P}oincaré algebra”, Phys. Lett. B, 351 (1995), 137–145, arXiv: q-alg/9502019 | DOI | MR | Zbl

[14] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Non-standard quantum {${\rm so}(2,2)$} and beyond”, J. Phys. A: Math. Gen., 28 (1995), 941–955, arXiv: hep-th/9406098 | DOI | MR | Zbl

[15] Ballesteros Á., Herranz F. J., Meusburger C., “Three-dimensional gravity and {D}rinfel'd doubles: spacetimes and symmetries from quantum deformations”, Phys. Lett. B, 687 (2010), 375–381, arXiv: 1001.4228 | DOI | MR

[16] Ballesteros Á., Herranz F. J., Meusburger C., “Drinfel'd doubles for (2+1)-gravity”, Classical Quantum Gravity, 30 (2013), 155012, 20 pp., arXiv: 1303.3080 | DOI | MR | Zbl

[17] Ballesteros Á., Herranz F. J., Meusburger C., “A (2+1) non-commutative {D}rinfel'd double spacetime with cosmological constant”, Phys. Lett. B, 732 (2014), 201–209, arXiv: 1402.2884 | DOI | MR

[18] Ballesteros Á., Herranz F. J., Musso F., “On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions”, J. Phys. Conf. Ser. (to appear) , arXiv: 1302.0684

[19] Ballesteros Á., Herranz F. J., Pereña C. M., “Null-plane quantum universal {$R$}-matrix”, Phys. Lett. B, 391 (1997), 71–77, arXiv: q-alg/9607009 | DOI | MR

[20] Batista E., Majid S., “Noncommutative geometry of angular momentum space {$U(\mathfrak{su}(2))$}”, J. Math. Phys., 44 (2003), 107–137, arXiv: hep-th/0205128 | DOI | MR | Zbl

[21] Belavin A. A., Drinfel'd V. G., “Solutions of the classical {Y}ang–{B}axter equation for simple {L}ie algebras”, Funct. Anal. Appl., 16 (1982), 159–180 | DOI | MR

[22] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI

[23] Borowiec A., Pachoł A., “{$\kappa$}-{M}inkowski spacetimes and {DSR} algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl

[24] Bruno N. R., Amelino-Camelia G., Kowalski-Glikman J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522 (2001), 133–138, arXiv: hep-th/0107039 | DOI | Zbl

[25] Celeghini E., Giachetti R., Sorace E., Tarlini M., “The three-dimensional {E}uclidean quantum group {$E(3)_q$} and its {$R$}-matrix”, J. Math. Phys., 32 (1991), 1159–1165 | DOI | MR | Zbl

[26] Celeghini E., Giachetti R., Sorace E., Tarlini M., “Contractions of quantum groups”, Quantum Groups ({L}eningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 221–244 | DOI | MR

[27] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl

[28] Daszkiewicz M., “Canonical and {L}ie-algebraic twist deformations of {$\kappa$}-{P}oincaré and contractions to {$\kappa$}-{G}alilei algebras”, Internat. J. Modern Phys. A, 23 (2008), 4387–4400, arXiv: 0807.0133 | DOI | MR | Zbl

[29] Daszkiewicz M., “Generalized twist deformations of {P}oincaré and {G}alilei {H}opf algebras”, Rep. Math. Phys., 63 (2009), 263–277, arXiv: 0812.1613 | DOI | MR | Zbl

[30] Daszkiewicz M., “Twist deformations of {N}ewton–{H}ooke {H}opf algebras”, Modern Phys. Lett. A, 24 (2009), 1325–1334, arXiv: 0904.0432 | DOI | MR | Zbl

[31] de Azcárraga J. A., del Olmo M. A., Pérez Bueno J. C., Santander M., “Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras”, J. Phys. A: Math. Gen., 30 (1997), 3069–3086, arXiv: q-alg/9612022 | DOI | MR | Zbl

[32] de Azcárraga J. A., Pérez Bueno J. C., “Deformed and extended {G}alilei group {H}opf algebras”, J. Phys. A: Math. Gen., 29 (1996), 6353–6362, arXiv: q-alg/9507005 | DOI | MR | Zbl

[33] Drinfel'd V. G., “Hamiltonian structures on {L}ie groups, {L}ie bialgebras and the geometric meaning of classical {Y}ang–{B}axter equations”, Soviet Math. Dokl., 27 (1983), 68–71 | MR

[34] Drinfel'd V. G., “Quantum groups”, Proceedings of the {I}nternational {C}ongress of {M}athematicians ({B}erkeley, {C}alif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR

[35] Freidel L., Kowalski-Glikman J., Smolin L., “2+1 gravity and doubly special relativity”, Phys. Rev. D, 69 (2004), 044001, 7 pp., arXiv: hep-th/0307085 | DOI | MR

[36] Garay L. J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–165, arXiv: gr-qc/9403008 | DOI

[37] Gomez X., “Classification of three-dimensional {L}ie bialgebras”, J. Math. Phys., 41 (2000), 4939–4956 | DOI | MR | Zbl

[38] Herranz F. J., Ballesteros Á., “Superintegrability on three-dimensional {R}iemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., arXiv: math-ph/0512084 | DOI | MR | Zbl

[39] Herranz F. J., de Montigny M., del Olmo M. A., Santander M., “Cayley–{K}lein algebras as graded contractions of {${\rm so}(N+1)$}”, J. Phys. A: Math. Gen., 27 (1994), 2515–2526, arXiv: hep-th/9312126 | DOI | MR | Zbl

[40] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618, arXiv: math-ph/0110019 | DOI | MR | Zbl

[41] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl

[42] Jimbo M., “A {$q$}-difference analogue of {$U({\mathfrak g})$} and the {Y}ang–{B}axter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[43] Kirillov A. Jr., Balsam B., Turaev–Viro invariants as an extended TQFT, arXiv: 1004.1533

[44] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl

[45] Lukierski J., Lyakhovsky V., Mozrzymas M., “{$\kappa$}-deformations of {$D=4$} {W}eyl and conformal symmetries”, Phys. Lett. B, 538 (2002), 375–384, arXiv: hep-th/0203182 | DOI | MR | Zbl

[46] Lukierski J., Minnaert P., Mozrzymas M., “Quantum deformations of conformal algebras introducing fundamental mass parameters”, Phys. Lett. B, 371 (1996), 215–222, arXiv: q-alg/9507005 | DOI | MR

[47] Lukierski J., Nowicki A., “Doubly special relativity versus {$\kappa$}-deformation of relativistic kinematics”, Internat. J. Modern Phys. A, 18 (2003), 7–18, arXiv: hep-th/0203065 | DOI | MR | Zbl

[48] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl

[49] Lukierski J., Ruegg H., “Quantum {$\kappa$}-{P}oincaré in any dimension”, Phys. Lett. B, 329 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR

[50] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR

[51] Lukierski J., Ruegg H., Zakrzewski W. J., “Classical and quantum mechanics of free {$k$}-relativistic systems”, Ann. Physics, 243 (1995), 90–116, arXiv: hep-th/9312153 | DOI | MR | Zbl

[52] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI

[53] Majid S., “Hopf algebras for physics at the {P}lanck scale”, Classical Quantum Gravity, 5 (1988), 1587–1606 | DOI | MR | Zbl

[54] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[55] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl

[56] Marcianò A., Amelino-Camelia G., Bruno N. R., Gubitosi G., Mandanici G., Melchiorri A., “Interplay between curvature and Planck-scale effects in astrophysics and cosmology”, J. Cosmol. Astropart. Phys., 2010:6 (2010), 030, 29 pp., arXiv: 1004.1110 | DOI | MR

[57] Maślanka P., “The {$n$}-dimensional {$\kappa$}-{P}oincaré algebra and group”, J. Phys. A: Math. Gen., 26 (1993), L1251–L1253 | DOI

[58] Meusburger C., Schroers B. J., “Quaternionic and {P}oisson–{L}ie structures in three-dimensional gravity: the cosmological constant as deformation parameter”, J. Math. Phys., 49 (2008), 083510, 27 pp., arXiv: 0708.1507 | DOI | MR | Zbl

[59] Meusburger C., Schroers B. J., “Generalised {C}hern–{S}imons actions for 3d gravity and {$\kappa$}-{P}oincaré symmetry”, Nuclear Phys. B, 806 (2009), 462–488, arXiv: 0805.3318 | DOI | MR | Zbl

[60] Šnobl L., Hlavatý L., “Classification of six-dimensional real {D}rinfeld doubles”, Internat. J. Modern Phys. A, 17 (2002), 4043–4067, arXiv: math.QA/0202210 | DOI | MR

[61] Takhtajan L. A., “Lectures on quantum groups”, Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory ({N}ankai, 1989), Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1990, 69–197 | MR

[62] Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs, arXiv: 1006.3501

[63] Witten E., “2+1-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl

[64] Zakrzewski S., “Quantum {P}oincaré group related to the {$\kappa$}-{P}oincaré algebra”, J. Phys. A: Math. Gen., 27 (1994), 2075–2082 | DOI | MR | Zbl

[65] Zakrzewski S., “Poisson structures on {P}oincaré group”, Comm. Math. Phys., 185 (1997), 285–311, arXiv: q-alg/9602001 | DOI | MR | Zbl