@article{SIGMA_2014_10_a51,
author = {\'Angel Ballesteros and Francisco J. Herranz and Catherine Meusburger and Pedro Naranjo},
title = {Twisted (2+1) $\kappa${-AdS} {Algebra,} {Drinfel'd} {Doubles} and {Non-Commutative} {Spacetimes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/}
}
TY - JOUR AU - Ángel Ballesteros AU - Francisco J. Herranz AU - Catherine Meusburger AU - Pedro Naranjo TI - Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/ LA - en ID - SIGMA_2014_10_a51 ER -
%0 Journal Article %A Ángel Ballesteros %A Francisco J. Herranz %A Catherine Meusburger %A Pedro Naranjo %T Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/ %G en %F SIGMA_2014_10_a51
Ángel Ballesteros; Francisco J. Herranz; Catherine Meusburger; Pedro Naranjo. Twisted (2+1) $\kappa$-AdS Algebra, Drinfel'd Doubles and Non-Commutative Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a51/
[1] Amelino-Camelia G., “Doubly-special relativity: first results and key open problems”, Internat. J. Modern Phys. D, 11 (2002), 1643–1669, arXiv: gr-qc/0210063 | DOI | MR | Zbl
[2] Amelino-Camelia G., “Quantum-spacetime phenomenology”, Living Rev. Relativity, 16 (2013), 5, 137 pp., arXiv: 0806.0339 | DOI | MR
[3] Amelino-Camelia G., Smolin L., Starodubtsev A., “Quantum symmetry, the cosmological constant and {P}lanck-scale phenomenology”, Classical Quantum Gravity, 21 (2004), 3095–3110, arXiv: hep-th/0306134 | DOI | MR | Zbl
[4] Arratia O., Herranz F. J., del Olmo M. A., “Bicrossproduct structure of the null-plane quantum {P}oincaré algebra”, J. Phys. A: Math. Gen., 31 (1998), L1–L7, arXiv: q-alg/9707025 | DOI | MR | Zbl
[5] Bacry H., Lévy-Leblond J. M., “Possible kinematics”, J. Math. Phys., 9 (1968), 1605–1614 | DOI | MR | Zbl
[6] Bais F. A., Müller N. M., “Topological field theory and the quantum double of {${\rm SU}(2)$}”, Nuclear Phys. B, 530 (1998), 349–400, arXiv: hep-th/9804130 | DOI | MR | Zbl
[7] Bais F. A., Müller N. M., Schroers B. J., “Quantum group symmetry and particle scattering in (2+1)-dimensional quantum gravity”, Nuclear Phys. B, 640 (2002), 3–45, arXiv: hep-th/0205021 | DOI | MR | Zbl
[8] Ballesteros Á., Bruno N. R., Herranz F. J., “A new ‘doubly special relativity’ theory from a quantum {W}eyl–{P}oincaré algebra”, J. Phys. A: Math. Gen., 36 (2003), 10493–10503, arXiv: hep-th/0305033 | DOI | MR | Zbl
[9] Ballesteros Á., Bruno N. R., Herranz F. J., “A non-commutative {M}inkowskian spacetime from a quantum {A}d{S} algebra”, Phys. Lett. B, 574 (2003), 276–282, arXiv: hep-th/0306089 | DOI | MR | Zbl
[10] Ballesteros Á., Bruno N. R., Herranz F. J., Non-commutative relativistic spacetimes and worldlines from 2+1 quantum (anti)de Sitter groups, arXiv: hep-th/0401244
[11] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Four-dimensional quantum affine algebras and space-time {$q$}-symmetries”, J. Math. Phys., 35 (1994), 4928–4940, arXiv: hep-th/9310140 | DOI | MR | Zbl
[12] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Quantum (2+1) kinematical algebras: a global approach”, J. Phys. A: Math. Gen., 27 (1994), 1283–1297 | DOI | MR | Zbl
[13] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “A new “null-plane” quantum {P}oincaré algebra”, Phys. Lett. B, 351 (1995), 137–145, arXiv: q-alg/9502019 | DOI | MR | Zbl
[14] Ballesteros Á., Herranz F. J., del Olmo M. A., Santander M., “Non-standard quantum {${\rm so}(2,2)$} and beyond”, J. Phys. A: Math. Gen., 28 (1995), 941–955, arXiv: hep-th/9406098 | DOI | MR | Zbl
[15] Ballesteros Á., Herranz F. J., Meusburger C., “Three-dimensional gravity and {D}rinfel'd doubles: spacetimes and symmetries from quantum deformations”, Phys. Lett. B, 687 (2010), 375–381, arXiv: 1001.4228 | DOI | MR
[16] Ballesteros Á., Herranz F. J., Meusburger C., “Drinfel'd doubles for (2+1)-gravity”, Classical Quantum Gravity, 30 (2013), 155012, 20 pp., arXiv: 1303.3080 | DOI | MR | Zbl
[17] Ballesteros Á., Herranz F. J., Meusburger C., “A (2+1) non-commutative {D}rinfel'd double spacetime with cosmological constant”, Phys. Lett. B, 732 (2014), 201–209, arXiv: 1402.2884 | DOI | MR
[18] Ballesteros Á., Herranz F. J., Musso F., “On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions”, J. Phys. Conf. Ser. (to appear) , arXiv: 1302.0684
[19] Ballesteros Á., Herranz F. J., Pereña C. M., “Null-plane quantum universal {$R$}-matrix”, Phys. Lett. B, 391 (1997), 71–77, arXiv: q-alg/9607009 | DOI | MR
[20] Batista E., Majid S., “Noncommutative geometry of angular momentum space {$U(\mathfrak{su}(2))$}”, J. Math. Phys., 44 (2003), 107–137, arXiv: hep-th/0205128 | DOI | MR | Zbl
[21] Belavin A. A., Drinfel'd V. G., “Solutions of the classical {Y}ang–{B}axter equation for simple {L}ie algebras”, Funct. Anal. Appl., 16 (1982), 159–180 | DOI | MR
[22] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI
[23] Borowiec A., Pachoł A., “{$\kappa$}-{M}inkowski spacetimes and {DSR} algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl
[24] Bruno N. R., Amelino-Camelia G., Kowalski-Glikman J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522 (2001), 133–138, arXiv: hep-th/0107039 | DOI | Zbl
[25] Celeghini E., Giachetti R., Sorace E., Tarlini M., “The three-dimensional {E}uclidean quantum group {$E(3)_q$} and its {$R$}-matrix”, J. Math. Phys., 32 (1991), 1159–1165 | DOI | MR | Zbl
[26] Celeghini E., Giachetti R., Sorace E., Tarlini M., “Contractions of quantum groups”, Quantum Groups ({L}eningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 221–244 | DOI | MR
[27] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[28] Daszkiewicz M., “Canonical and {L}ie-algebraic twist deformations of {$\kappa$}-{P}oincaré and contractions to {$\kappa$}-{G}alilei algebras”, Internat. J. Modern Phys. A, 23 (2008), 4387–4400, arXiv: 0807.0133 | DOI | MR | Zbl
[29] Daszkiewicz M., “Generalized twist deformations of {P}oincaré and {G}alilei {H}opf algebras”, Rep. Math. Phys., 63 (2009), 263–277, arXiv: 0812.1613 | DOI | MR | Zbl
[30] Daszkiewicz M., “Twist deformations of {N}ewton–{H}ooke {H}opf algebras”, Modern Phys. Lett. A, 24 (2009), 1325–1334, arXiv: 0904.0432 | DOI | MR | Zbl
[31] de Azcárraga J. A., del Olmo M. A., Pérez Bueno J. C., Santander M., “Graded contractions and bicrossproduct structure of deformed inhomogeneous algebras”, J. Phys. A: Math. Gen., 30 (1997), 3069–3086, arXiv: q-alg/9612022 | DOI | MR | Zbl
[32] de Azcárraga J. A., Pérez Bueno J. C., “Deformed and extended {G}alilei group {H}opf algebras”, J. Phys. A: Math. Gen., 29 (1996), 6353–6362, arXiv: q-alg/9507005 | DOI | MR | Zbl
[33] Drinfel'd V. G., “Hamiltonian structures on {L}ie groups, {L}ie bialgebras and the geometric meaning of classical {Y}ang–{B}axter equations”, Soviet Math. Dokl., 27 (1983), 68–71 | MR
[34] Drinfel'd V. G., “Quantum groups”, Proceedings of the {I}nternational {C}ongress of {M}athematicians ({B}erkeley, {C}alif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[35] Freidel L., Kowalski-Glikman J., Smolin L., “2+1 gravity and doubly special relativity”, Phys. Rev. D, 69 (2004), 044001, 7 pp., arXiv: hep-th/0307085 | DOI | MR
[36] Garay L. J., “Quantum gravity and minimum length”, Internat. J. Modern Phys. A, 10 (1995), 145–165, arXiv: gr-qc/9403008 | DOI
[37] Gomez X., “Classification of three-dimensional {L}ie bialgebras”, J. Math. Phys., 41 (2000), 4939–4956 | DOI | MR | Zbl
[38] Herranz F. J., Ballesteros Á., “Superintegrability on three-dimensional {R}iemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., arXiv: math-ph/0512084 | DOI | MR | Zbl
[39] Herranz F. J., de Montigny M., del Olmo M. A., Santander M., “Cayley–{K}lein algebras as graded contractions of {${\rm so}(N+1)$}”, J. Phys. A: Math. Gen., 27 (1994), 2515–2526, arXiv: hep-th/9312126 | DOI | MR | Zbl
[40] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618, arXiv: math-ph/0110019 | DOI | MR | Zbl
[41] Inönü E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39 (1953), 510–524 | DOI | MR | Zbl
[42] Jimbo M., “A {$q$}-difference analogue of {$U({\mathfrak g})$} and the {Y}ang–{B}axter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[43] Kirillov A. Jr., Balsam B., Turaev–Viro invariants as an extended TQFT, arXiv: 1004.1533
[44] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl
[45] Lukierski J., Lyakhovsky V., Mozrzymas M., “{$\kappa$}-deformations of {$D=4$} {W}eyl and conformal symmetries”, Phys. Lett. B, 538 (2002), 375–384, arXiv: hep-th/0203182 | DOI | MR | Zbl
[46] Lukierski J., Minnaert P., Mozrzymas M., “Quantum deformations of conformal algebras introducing fundamental mass parameters”, Phys. Lett. B, 371 (1996), 215–222, arXiv: q-alg/9507005 | DOI | MR
[47] Lukierski J., Nowicki A., “Doubly special relativity versus {$\kappa$}-deformation of relativistic kinematics”, Internat. J. Modern Phys. A, 18 (2003), 7–18, arXiv: hep-th/0203065 | DOI | MR | Zbl
[48] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[49] Lukierski J., Ruegg H., “Quantum {$\kappa$}-{P}oincaré in any dimension”, Phys. Lett. B, 329 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR
[50] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[51] Lukierski J., Ruegg H., Zakrzewski W. J., “Classical and quantum mechanics of free {$k$}-relativistic systems”, Ann. Physics, 243 (1995), 90–116, arXiv: hep-th/9312153 | DOI | MR | Zbl
[52] Magueijo J., Smolin L., “Lorentz invariance with an invariant energy scale”, Phys. Rev. Lett., 88 (2002), 190403, 4 pp., arXiv: hep-th/0112090 | DOI
[53] Majid S., “Hopf algebras for physics at the {P}lanck scale”, Classical Quantum Gravity, 5 (1988), 1587–1606 | DOI | MR | Zbl
[54] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[55] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl
[56] Marcianò A., Amelino-Camelia G., Bruno N. R., Gubitosi G., Mandanici G., Melchiorri A., “Interplay between curvature and Planck-scale effects in astrophysics and cosmology”, J. Cosmol. Astropart. Phys., 2010:6 (2010), 030, 29 pp., arXiv: 1004.1110 | DOI | MR
[57] Maślanka P., “The {$n$}-dimensional {$\kappa$}-{P}oincaré algebra and group”, J. Phys. A: Math. Gen., 26 (1993), L1251–L1253 | DOI
[58] Meusburger C., Schroers B. J., “Quaternionic and {P}oisson–{L}ie structures in three-dimensional gravity: the cosmological constant as deformation parameter”, J. Math. Phys., 49 (2008), 083510, 27 pp., arXiv: 0708.1507 | DOI | MR | Zbl
[59] Meusburger C., Schroers B. J., “Generalised {C}hern–{S}imons actions for 3d gravity and {$\kappa$}-{P}oincaré symmetry”, Nuclear Phys. B, 806 (2009), 462–488, arXiv: 0805.3318 | DOI | MR | Zbl
[60] Šnobl L., Hlavatý L., “Classification of six-dimensional real {D}rinfeld doubles”, Internat. J. Modern Phys. A, 17 (2002), 4043–4067, arXiv: math.QA/0202210 | DOI | MR
[61] Takhtajan L. A., “Lectures on quantum groups”, Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory ({N}ankai, 1989), Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1990, 69–197 | MR
[62] Turaev V., Virelizier A., On two approaches to 3-dimensional TQFTs, arXiv: 1006.3501
[63] Witten E., “2+1-dimensional gravity as an exactly soluble system”, Nuclear Phys. B, 311 (1988), 46–78 | DOI | MR | Zbl
[64] Zakrzewski S., “Quantum {P}oincaré group related to the {$\kappa$}-{P}oincaré algebra”, J. Phys. A: Math. Gen., 27 (1994), 2075–2082 | DOI | MR | Zbl
[65] Zakrzewski S., “Poisson structures on {P}oincaré group”, Comm. Math. Phys., 185 (1997), 285–311, arXiv: q-alg/9602001 | DOI | MR | Zbl