@article{SIGMA_2014_10_a50,
author = {Freddy Cachazo and Lionel Mason and David Skinner},
title = {Gravity in {Twistor} {Space} and~its {Grassmannian} {Formulation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a50/}
}
TY - JOUR AU - Freddy Cachazo AU - Lionel Mason AU - David Skinner TI - Gravity in Twistor Space and its Grassmannian Formulation JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a50/ LA - en ID - SIGMA_2014_10_a50 ER -
Freddy Cachazo; Lionel Mason; David Skinner. Gravity in Twistor Space and its Grassmannian Formulation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a50/
[1] Arkani-Hamed N., Bourjaily J., Cachazo F., Caron-Huot S., Trnka J., “The all-loop integrand for scattering amplitudes in planar {${\mathcal N}=4$} {SYM}”, J. High Energy Phys., 2011:1 (2011), 041, 46 pp., arXiv: 1008.2958 | DOI | MR | Zbl
[2] Arkani-Hamed N., Bourjaily J., Cachazo F., Trnka J., “Unification of residues and {G}rassmannian dualities”, J. High Energy Phys., 2011:1 (2011), 049, 45 pp., arXiv: 0912.4912 | DOI | MR | Zbl
[3] Arkani-Hamed N., Cachazo F., Cheung C., Kaplan J., “A duality for the {$S$} matrix”, J. High Energy Phys., 2010:3 (2010), 020, 69 pp., arXiv: 0907.5418 | DOI | MR | Zbl
[4] Arkani-Hamed N., Cachazo F., Cheung C., Kaplan J., “The {$S$}-matrix in twistor space”, J. High Energy Phys., 2010:3 (2010), 110, 47 pp., arXiv: 0903.2110 | DOI | MR | Zbl
[5] Arkani-Hamed N., Cachazo F., Kaplan J., What is the simplest quantum field theory?, J. High Energy Phys., 2010:9 (2010), 016, 90 pp., arXiv: 0808.1446 | DOI | MR
[6] Arkani-Hamed N., Kaplan J., “On tree amplitudes in gauge theory and gravity”, J. High Energy Phys., 2008:4 (2008), 076, 21 pp., arXiv: 0801.2385 | DOI | MR | Zbl
[7] Bedford J., Brandhuber A., Spence W., Travaglini G., “A recursion relation for gravity amplitudes”, Nuclear Phys. B, 721 (2005), 98–110, arXiv: hep-th/0502146 | DOI | MR | Zbl
[8] Benincasa P., Boucher-Veronneau C., Cachazo F., “Taming tree amplitudes in general relativity”, J. High Energy Phys., 2007:11 (2007), 057, 25 pp., arXiv: hep-th/0702032 | DOI | MR | Zbl
[9] Berkovits N., “Alternative string theory in twistor space for {${\mathcal N}=4$} super-{Y}ang–{M}ills theory”, Phys. Rev. Lett., 93 (2004), 011601, 3 pp., arXiv: hep-th/0402045 | DOI | MR
[10] Bourjaily J. L., Trnka J., Volovich A., Wen C., “The {G}rassmannian and the twistor string: connecting all trees in {${\mathcal N}=4$} {SYM}”, J. High Energy Phys., 2011:1 (2011), 038, 19 pp., arXiv: 1006.1899 | DOI | MR | Zbl
[11] Britto R., Cachazo F., Feng B., “New recursion relations for tree amplitudes of gluons”, Nuclear Phys. B, 715 (2005), 499–522, arXiv: hep-th/0412308 | DOI | MR | Zbl
[12] Britto R., Cachazo F., Feng B., Witten E., “Direct proof of the tree-level scattering amplitude recursion relation in {Y}ang–{M}ills theory”, Phys. Rev. Lett., 94 (2005), 181602, 4 pp., arXiv: hep-th/0501052 | DOI | MR
[13] Bullimore M., New formulae for gravity amplitudes: parity invariance and soft limits, arXiv: 1207.3940
[14] Bullimore M., Mason L., Skinner D., “Twistor-strings, {G}rassmannians and leading singularities”, J. High Energy Phys., 2010:3 (2010), 070, 54 pp., arXiv: 0912.0539 | DOI | MR | Zbl
[15] Cachazo F., Skinner D., “Gravity from rational curves in twistor space”, Phys. Rev. Lett., 110 (2013), 161301, 4 pp., arXiv: 1207.0741 | DOI
[16] Cachazo F., Svrcek P., Tree-level recursion relations in general relativity, arXiv: hep-th/0502160
[17] Cheung C., “On-shell recursion relations for generic theories”, J. High Energy Phys., 2010:3 (2010), 098, 19 pp., arXiv: 0808.0504 | DOI | MR | Zbl
[18] Dolan L., Goddard P., “Gluon tree amplitudes in open twistor string theory”, J. High Energy Phys., 2009:12 (2009), 032, 32 pp., arXiv: 0909.0499 | DOI | MR
[19] Dolan L., Goddard P., “General split helicity gluon tree amplitudes in open twistor string theory”, J. High Energy Phys., 2010:5 (2010), 044, 27 pp., arXiv: 1002.4852 | DOI | MR
[20] Dolan L., Goddard P., “Complete equivalence between gluon tree amplitudes in twistor string theory and in gauge theory”, J. High Energy Phys., 2012:6 (2012), 030, 37 pp., arXiv: 1111.0950 | DOI | MR
[21] Gukov S., Motl L., Neitzke A., “Equivalence of twistor prescriptions for super {Y}ang–{M}ills”, Adv. Theor. Math. Phys., 11 (2007), 199–231, arXiv: hep-th/0404085 | DOI | MR | Zbl
[22] He S., “A link representation for gravity amplitudes”, J. High Energy Phys., 2013:10 (2013), 139, 11 pp., arXiv: 1207.4064 | DOI | MR
[23] Hodges A., “New expressions for gravitational scattering amplitudes”, J. High Energy Phys., 2013:7 (2013), 075, 33 pp., arXiv: 1108.2227 | DOI | MR
[24] Hodges A., A simple formula for gravitational MHV amplitudes, arXiv: 1204.1930
[25] Mason L., Skinner D., “Dual superconformal invariance, momentum twistors and {G}rassmannians”, J. High Energy Phys., 2009:11 (2009), 045, 39 pp., arXiv: 0909.0250 | DOI | MR
[26] Mason L., Skinner D., “Scattering amplitudes and {BCFW} recursion in twistor space”, J. High Energy Phys., 2010:1 (2010), 064, 65 pp., arXiv: 0903.2083 | DOI | MR | Zbl
[27] Mason L. J., Wolf M., “Twistor actions for self-dual supergravities”, Comm. Math. Phys., 288 (2009), 97–123, arXiv: 0706.1941 | DOI | MR | Zbl
[28] Nandan D., Volovich A., Wen C., “A Grassmannian étude in NMHV minors”, J. High Energy Phys., 2010:7 (2010), 061, 15 pp., arXiv: 0912.3705 | DOI | MR
[29] Penrose R., “The nonlinear graviton”, Gen. Relativity Gravitation, 7 (1976), 171–176 | DOI | MR
[30] Roiban R., Spradlin M., Volovich A., “Tree-level {$S$} matrix of {Y}ang–{M}ills theory”, Phys. Rev. D, 70 (2004), 026009, 10 pp., arXiv: hep-th/0403190 | DOI | MR
[31] Skinner D., “A direct proof of {BCFW} recursion for twistor-strings”, J. High Energy Phys., 2011:1 (2011), 072, 22 pp., arXiv: 1007.0195 | DOI | MR | Zbl
[32] Spradlin M., Volovich A., “From twistor string theory to recursion relations”, Phys. Rev. D, 80 (2009), 085022, 5 pp., arXiv: 0909.0229 | DOI | MR
[33] Spradlin M., Volovich A., Wen C., “Three applications of a bonus relation for gravity amplitudes”, Phys. Lett. B, 674 (2009), 69–72, arXiv: 0812.4767 | DOI | MR
[34] Vergu C., “Factorization of the connected prescription for {Y}ang–{M}ills amplitudes”, Phys. Rev. D, 75 (2007), 025028, 7 pp., arXiv: hep-th/0612250 | DOI | MR
[35] Witten E., “Parity invariance for strings in twistor space”, Adv. Theor. Math. Phys., 8 (2004), 779–797, arXiv: hep-th/0403199 | DOI | MR
[36] Witten E., “Perturbative gauge theory as a string theory in twistor space”, Comm. Math. Phys., 252 (2004), 189–258, arXiv: hep-th/0312171 | DOI | MR | Zbl