The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Following the approach of [Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., J. High Energy Phys. 2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310], we show how to construct the master $T$-operator for the quantum inhomogeneous ${\rm GL}(N)$ $XXX$ spin chain with twisted boundary conditions. It satisfies the bilinear identity and Hirota equations for the classical mKP hierarchy. We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master $T$-operator and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable connection between the quantum spin chain and the classical Ruijsenaars–Schneider system of particles.
Keywords: quantum integrable spin chains; classical many-body systems; quantum-classical correspondence; master $T$-operator; tau-function.
@article{SIGMA_2014_10_a5,
     author = {Anton Zabrodin},
     title = {The {Master} $T${-Operator} for {Inhomogeneous} $XXX$ {Spin} {Chain} and {mKP} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/}
}
TY  - JOUR
AU  - Anton Zabrodin
TI  - The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/
LA  - en
ID  - SIGMA_2014_10_a5
ER  - 
%0 Journal Article
%A Anton Zabrodin
%T The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/
%G en
%F SIGMA_2014_10_a5
Anton Zabrodin. The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/

[1] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the {K}orteweg-de {V}ries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[2] Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., “Classical tau-function for quantum spin chains”, J. High Energy Phys., 2013:9 (2013), 064, 65 pp., arXiv: 1112.3310 | DOI | MR

[3] Alexandrov A., Leurent S., Tsuboi Z., Zabrodin A., The master $T$-operator for the Gaudin model and the KP hierarchy, arXiv: 1306.1111

[4] Bazhanov V. V., Reshetikhin N., “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23 (1990), 1477–1492 | DOI | MR | Zbl

[5] Cherednik I. V., “An analogue of the character formula for {H}ecke algebras”, Funct. Anal. Appl., 21 (1987), 172–174 | DOI | MR | Zbl

[6] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems — Classical Theory and Quantum Theory ({K}yoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR

[7] Gaiotto D., Koroteev P., “On three dimensional quiver gauge theories and integrability”, J. High Energy Phys., 2013:5 (2013), 126, 59 pp., arXiv: 1304.0779 | DOI | MR

[8] Gorsky A., Zabrodin A., Zotov A., “Spectrum of quantum transfer matrices via classical many-body systems”, J. High Energy Phys. (to appear) , arXiv: 1310.6958

[9] Harnad J., Ènol'skii V. Z., “Schur function expansion of KP {$\tau$}-functions associated with algebraic curves”, Russ. Math. Surv., 66 (2011), 767–807, arXiv: 1012.3152 | DOI | MR | Zbl

[10] Hikami K., Kulish P. P., Wadati M., “Construction of integrable spin systems with long-range interactions”, J. Phys. Soc. Japan, 61 (1992), 3071–3076 | DOI | MR

[11] Hirota R., “Discrete analogue of a generalized {T}oda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR

[12] Iliev P., “Rational {R}uijsenaars–{S}chneider hierarchy and bispectral difference operators”, Phys. D, 229 (2007), 184–190, arXiv: math-ph/0609011 | DOI | MR | Zbl

[13] Jimbo M., Miwa T., “Solitons and infinite-dimensional {L}ie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl

[14] Kazakov V., Leurent S., Tsuboi Z., “Baxter's {$Q$}-operators and operatorial {B}äcklund flow for quantum (super)-spin chains”, Comm. Math. Phys., 311 (2012), 787–814, arXiv: 1010.4022 | DOI | MR | Zbl

[15] Kazakov V., Sorin A., Zabrodin A., “Supersymmetric {B}ethe ansatz and {B}axter equations from discrete {H}irota dynamics”, Nuclear Phys. B, 790 (2008), 345–413, arXiv: hep-th/0703147 | DOI | MR | Zbl

[16] Kazakov V., Vieira P., “From characters to quantum (super)spin chains via fusion”, J. High Energy Phys., 2008:10 (2008), 050, 31 pp., arXiv: 0711.2470 | DOI | MR | Zbl

[17] Krichever I., “Rational solutions of the Zakharov–Shabat equations and completely integrable systems of $N$ particles on a line”, J. Sov. Math., 21 (1983), 335–345 | DOI | Zbl

[18] Krichever I., “General rational reductions of the {K}adomtsev–{P}etviashvili hierarchy and their symmetries”, Funct. Anal. Appl., 29 (1995), 75–80 | DOI | MR | Zbl

[19] Krichever I., Lipan O., Wiegmann P., Zabrodin A., “Quantum integrable models and discrete classical {H}irota equations”, Comm. Math. Phys., 188 (1997), 267–304, arXiv: hep-th/9604080 | DOI | MR | Zbl

[20] Krichever I., Zabrodin A., “Spin generalization of the {R}uijsenaars–{S}chneider model, the nonabelian two-dimensionalized {T}oda lattice, and representations of the {S}klyanin algebra”, Russ. Math. Surv., 50 (1995), 1101–1150, arXiv: hep-th/9505039 | DOI | MR | Zbl

[21] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I: Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl

[22] Kuniba A., Ohta Y., Suzuki J., “Quantum {J}acobi–{T}rudi and {G}iambelli formulae for {$U_q(B^{(1)}_r)$} from the analytic {B}ethe ansatz”, J. Phys. A: Math. Gen., 28 (1995), 6211–6226, arXiv: hep-th/9506167 | DOI | MR | Zbl

[23] Macdonald I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl

[24] Miwa T., “On {H}irota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl

[25] Mukhin E., Tarasov V., Varchenko A., Bethe subalgebras of the group algebra of the symmetric group, arXiv: 1004.4248 | MR

[26] Mukhin E., Tarasov V., Varchenko A., “Gaudin {H}amiltonians generate the {B}ethe algebra of a tensor power of the vector representation of {$\mathfrak{gl}_N$}”, St. Petersburg Math. J., 22 (2011), 463–472, arXiv: 0904.2131 | DOI | MR | Zbl

[27] Mukhin E., Tarasov V., Varchenko A., “K{Z} characteristic variety as the zero set of classical {C}alogero–{M}oser {H}amiltonians”, SIGMA, 8 (2012), 072, 11 pp., arXiv: 1201.3990 | DOI | MR | Zbl

[28] Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and representations of the Yangian $Y(gl_N)$, arXiv: 1303.1578

[29] Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, {Y}ang–{Y}ang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93, arXiv: 1103.3919 | DOI | MR

[30] Nijhoff F.W., Ragnisco O., Kuznetsov V. B., “Integrable time-discretisation of the {R}uijsenaars–{S}chneider model”, Comm. Math. Phys., 176 (1996), 681–700, arXiv: hep-th/9412170 | DOI | MR | Zbl

[31] Orlov A. Y., Shiota T., “Schur function expansion for normal matrix model and associated discrete matrix models”, Phys. Lett. A, 343 (2005), 384–396, arXiv: math-ph/0501017 | DOI | MR | Zbl

[32] Ruijsenaars S. N. M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl

[33] Sato M., Sato Y., “Soliton equations as dynamical systems on infinite-dimensional {G}rassmann manifold”, Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl

[34] Shiota T., “Calogero–{M}oser hierarchy and {KP} hierarchy”, J. Math. Phys., 35 (1994), 5844–5849, arXiv: hep-th/9402021 | DOI | MR | Zbl

[35] Sklyanin E. K., “Quantum inverse scattering method. {S}elected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63–97, arXiv: hep-th/9211111 | MR

[36] Sklyanin E. K., “Separation of variables. New trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60, arXiv: solv-int/9504001 | DOI | MR | Zbl

[37] Wilson G., “Collisions of {C}alogero–{M}oser particles and an adelic {G}rassmannian”, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl

[38] Zabrodin A., “Discrete {H}irota's equation in quantum integrable models”, Internat. J. Modern Phys. B, 11 (1997), 3125–3158, arXiv: hep-th/9610039 | DOI | MR | Zbl

[39] Zabrodin A., “The {H}irota equation and the {B}ethe ansatz”, Theoret. and Math. Phys., 116 (1998), 782–819 | DOI | MR | Zbl

[40] Zabrodin A., “Bäcklund transformation for the {H}irota difference equation, and the supersymmetric {B}ethe ansatz”, Theoret. and Math. Phys., 155 (2008), 567–584, arXiv: 0705.4006 | DOI | MR | Zbl

[41] Zabrodin A., “Bethe ansatz and Hirota equation in integrable models”, Suuri-kagaku J., 596 (2013), 7–12, arXiv: 1211.4428

[42] Zabrodin A., “The master $T$-operator for vertex models with trigonometric $R$-matrices as classical $\tau$-function”, Theoret. and Math. Phys., 171 (2013), 52–67, arXiv: 1205.4152 | DOI