@article{SIGMA_2014_10_a5,
author = {Anton Zabrodin},
title = {The {Master} $T${-Operator} for {Inhomogeneous} $XXX$ {Spin} {Chain} and {mKP} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/}
}
Anton Zabrodin. The Master $T$-Operator for Inhomogeneous $XXX$ Spin Chain and mKP Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a5/
[1] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the {K}orteweg-de {V}ries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl
[2] Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., “Classical tau-function for quantum spin chains”, J. High Energy Phys., 2013:9 (2013), 064, 65 pp., arXiv: 1112.3310 | DOI | MR
[3] Alexandrov A., Leurent S., Tsuboi Z., Zabrodin A., The master $T$-operator for the Gaudin model and the KP hierarchy, arXiv: 1306.1111
[4] Bazhanov V. V., Reshetikhin N., “Restricted solid-on-solid models connected with simply laced algebras and conformal field theory”, J. Phys. A: Math. Gen., 23 (1990), 1477–1492 | DOI | MR | Zbl
[5] Cherednik I. V., “An analogue of the character formula for {H}ecke algebras”, Funct. Anal. Appl., 21 (1987), 172–174 | DOI | MR | Zbl
[6] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems — Classical Theory and Quantum Theory ({K}yoto, 1981), World Sci. Publishing, Singapore, 1983, 39–119 | MR
[7] Gaiotto D., Koroteev P., “On three dimensional quiver gauge theories and integrability”, J. High Energy Phys., 2013:5 (2013), 126, 59 pp., arXiv: 1304.0779 | DOI | MR
[8] Gorsky A., Zabrodin A., Zotov A., “Spectrum of quantum transfer matrices via classical many-body systems”, J. High Energy Phys. (to appear) , arXiv: 1310.6958
[9] Harnad J., Ènol'skii V. Z., “Schur function expansion of KP {$\tau$}-functions associated with algebraic curves”, Russ. Math. Surv., 66 (2011), 767–807, arXiv: 1012.3152 | DOI | MR | Zbl
[10] Hikami K., Kulish P. P., Wadati M., “Construction of integrable spin systems with long-range interactions”, J. Phys. Soc. Japan, 61 (1992), 3071–3076 | DOI | MR
[11] Hirota R., “Discrete analogue of a generalized {T}oda equation”, J. Phys. Soc. Japan, 50 (1981), 3785–3791 | DOI | MR
[12] Iliev P., “Rational {R}uijsenaars–{S}chneider hierarchy and bispectral difference operators”, Phys. D, 229 (2007), 184–190, arXiv: math-ph/0609011 | DOI | MR | Zbl
[13] Jimbo M., Miwa T., “Solitons and infinite-dimensional {L}ie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl
[14] Kazakov V., Leurent S., Tsuboi Z., “Baxter's {$Q$}-operators and operatorial {B}äcklund flow for quantum (super)-spin chains”, Comm. Math. Phys., 311 (2012), 787–814, arXiv: 1010.4022 | DOI | MR | Zbl
[15] Kazakov V., Sorin A., Zabrodin A., “Supersymmetric {B}ethe ansatz and {B}axter equations from discrete {H}irota dynamics”, Nuclear Phys. B, 790 (2008), 345–413, arXiv: hep-th/0703147 | DOI | MR | Zbl
[16] Kazakov V., Vieira P., “From characters to quantum (super)spin chains via fusion”, J. High Energy Phys., 2008:10 (2008), 050, 31 pp., arXiv: 0711.2470 | DOI | MR | Zbl
[17] Krichever I., “Rational solutions of the Zakharov–Shabat equations and completely integrable systems of $N$ particles on a line”, J. Sov. Math., 21 (1983), 335–345 | DOI | Zbl
[18] Krichever I., “General rational reductions of the {K}adomtsev–{P}etviashvili hierarchy and their symmetries”, Funct. Anal. Appl., 29 (1995), 75–80 | DOI | MR | Zbl
[19] Krichever I., Lipan O., Wiegmann P., Zabrodin A., “Quantum integrable models and discrete classical {H}irota equations”, Comm. Math. Phys., 188 (1997), 267–304, arXiv: hep-th/9604080 | DOI | MR | Zbl
[20] Krichever I., Zabrodin A., “Spin generalization of the {R}uijsenaars–{S}chneider model, the nonabelian two-dimensionalized {T}oda lattice, and representations of the {S}klyanin algebra”, Russ. Math. Surv., 50 (1995), 1101–1150, arXiv: hep-th/9505039 | DOI | MR | Zbl
[21] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I: Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl
[22] Kuniba A., Ohta Y., Suzuki J., “Quantum {J}acobi–{T}rudi and {G}iambelli formulae for {$U_q(B^{(1)}_r)$} from the analytic {B}ethe ansatz”, J. Phys. A: Math. Gen., 28 (1995), 6211–6226, arXiv: hep-th/9506167 | DOI | MR | Zbl
[23] Macdonald I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl
[24] Miwa T., “On {H}irota's difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 9–12 | DOI | MR | Zbl
[25] Mukhin E., Tarasov V., Varchenko A., Bethe subalgebras of the group algebra of the symmetric group, arXiv: 1004.4248 | MR
[26] Mukhin E., Tarasov V., Varchenko A., “Gaudin {H}amiltonians generate the {B}ethe algebra of a tensor power of the vector representation of {$\mathfrak{gl}_N$}”, St. Petersburg Math. J., 22 (2011), 463–472, arXiv: 0904.2131 | DOI | MR | Zbl
[27] Mukhin E., Tarasov V., Varchenko A., “K{Z} characteristic variety as the zero set of classical {C}alogero–{M}oser {H}amiltonians”, SIGMA, 8 (2012), 072, 11 pp., arXiv: 1201.3990 | DOI | MR | Zbl
[28] Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and representations of the Yangian $Y(gl_N)$, arXiv: 1303.1578
[29] Nekrasov N., Rosly A., Shatashvili S., “Darboux coordinates, {Y}ang–{Y}ang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93, arXiv: 1103.3919 | DOI | MR
[30] Nijhoff F.W., Ragnisco O., Kuznetsov V. B., “Integrable time-discretisation of the {R}uijsenaars–{S}chneider model”, Comm. Math. Phys., 176 (1996), 681–700, arXiv: hep-th/9412170 | DOI | MR | Zbl
[31] Orlov A. Y., Shiota T., “Schur function expansion for normal matrix model and associated discrete matrix models”, Phys. Lett. A, 343 (2005), 384–396, arXiv: math-ph/0501017 | DOI | MR | Zbl
[32] Ruijsenaars S. N. M., Schneider H., “A new class of integrable systems and its relation to solitons”, Ann. Physics, 170 (1986), 370–405 | DOI | MR | Zbl
[33] Sato M., Sato Y., “Soliton equations as dynamical systems on infinite-dimensional {G}rassmann manifold”, Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), North-Holland Math. Stud., 81, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl
[34] Shiota T., “Calogero–{M}oser hierarchy and {KP} hierarchy”, J. Math. Phys., 35 (1994), 5844–5849, arXiv: hep-th/9402021 | DOI | MR | Zbl
[35] Sklyanin E. K., “Quantum inverse scattering method. {S}elected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63–97, arXiv: hep-th/9211111 | MR
[36] Sklyanin E. K., “Separation of variables. New trends”, Progr. Theoret. Phys. Suppl., 118 (1995), 35–60, arXiv: solv-int/9504001 | DOI | MR | Zbl
[37] Wilson G., “Collisions of {C}alogero–{M}oser particles and an adelic {G}rassmannian”, Invent. Math., 133 (1998), 1–41 | DOI | MR | Zbl
[38] Zabrodin A., “Discrete {H}irota's equation in quantum integrable models”, Internat. J. Modern Phys. B, 11 (1997), 3125–3158, arXiv: hep-th/9610039 | DOI | MR | Zbl
[39] Zabrodin A., “The {H}irota equation and the {B}ethe ansatz”, Theoret. and Math. Phys., 116 (1998), 782–819 | DOI | MR | Zbl
[40] Zabrodin A., “Bäcklund transformation for the {H}irota difference equation, and the supersymmetric {B}ethe ansatz”, Theoret. and Math. Phys., 155 (2008), 567–584, arXiv: 0705.4006 | DOI | MR | Zbl
[41] Zabrodin A., “Bethe ansatz and Hirota equation in integrable models”, Suuri-kagaku J., 596 (2013), 7–12, arXiv: 1211.4428
[42] Zabrodin A., “The master $T$-operator for vertex models with trigonometric $R$-matrices as classical $\tau$-function”, Theoret. and Math. Phys., 171 (2013), 52–67, arXiv: 1205.4152 | DOI