Geometric Aspects of the Painlevé Equations $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Riemann–Hilbert approach for the equations $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$ is studied in detail, involving moduli spaces for connections and monodromy data, Okamoto–Painlevé varieties, the Painlevé property, special solutions and explicit Bäcklund transformations.
Keywords: moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations.
@article{SIGMA_2014_10_a49,
     author = {Marius van der Put and Jaap Top},
     title = {Geometric {Aspects} of the {Painlev\'e} {Equations} $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a49/}
}
TY  - JOUR
AU  - Marius van der Put
AU  - Jaap Top
TI  - Geometric Aspects of the Painlevé Equations $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a49/
LA  - en
ID  - SIGMA_2014_10_a49
ER  - 
%0 Journal Article
%A Marius van der Put
%A Jaap Top
%T Geometric Aspects of the Painlevé Equations $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a49/
%G en
%F SIGMA_2014_10_a49
Marius van der Put; Jaap Top. Geometric Aspects of the Painlevé Equations $\mathrm{PIII(D_6)}$ and $\mathrm{PIII(D_7)}$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a49/

[1] Inaba M., Saito M.-H., “Moduli of unramified irregular singular parabolic connections on a smooth projective curve”, Kyoto J. Math., 53 (2013), 433–482, arXiv: 1203.0084 | DOI | MR | Zbl

[2] Kaneko K., Ohyama Y., “Meromorphic {P}ainlevé transcendents at a fixed singularity”, Math. Nachr., 286 (2013), 861–875 | DOI | MR | Zbl

[3] Kaup L., Kaup B., Holomorphic functions of several variables. An introduction to the fundamental theory, de Gruyter Studies in Mathematics, 3, Walter de Gruyter Co., Berlin, 1983 | DOI | MR | Zbl

[4] Milne A. E., Clarkson P. A., Bassom A. P., “Bäcklund transformations and solution hierarchies for the third {P}ainlevé equation”, Stud. Appl. Math., 98 (1997), 139–194 | DOI | MR | Zbl

[5] Ohyama Y., “Rational transformations of confluent hypergeometric equations and algebraic solutions of the {P}ainlevé equations: {P}1 to {P}5”, Algebraic, Analytic and Geometric Aspects of Complex Differential Equations and their Deformations. {P}ainlevé Hierarchies, RIMS Kôkyûroku Bessatsu, B2, Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, 137–150 | MR

[6] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the {P}ainlevé equations. {V}: {T}hird {P}ainlevé equations of special type {${\rm P_{III}(D_7)}$} and {${\rm P_{III}(D_8)}$}”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl

[7] Okamoto K., “Studies on the {P}ainlevé equations. {IV}: {T}hird {P}ainlevé equation {${\rm P_{III}}$}”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl

[8] van der Put M., “Families of linear differential equations related to the second {P}ainlevé equation”, Algebraic Methods in Dynamical Systems, Banach Center Publ., 94, Polish Acad. Sci. Inst. Math., Warsaw, 2011, 247–262 | DOI | MR | Zbl

[9] van der Put M., “Families of linear differential equations and the Painlevé equations”, Geometric and Differential Galois Theories, Sémin. Congr., 27, Soc. Math. France, Paris, 2012, 203–220

[10] van der Put M., Saito M.-H., “Moduli spaces for linear differential equations and the {P}ainlevé equations”, Ann. Inst. Fourier (Grenoble), 59 (2009), 2611–2667, arXiv: 0902.1702 | DOI | MR | Zbl

[11] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | MR | Zbl

[12] van der Put M., Top J., “A Riemann–Hilbert approach to Painlevé IV”, J. Nonlinear Math. Phys., 20:1 (2013), 165–177, arXiv: 1207.4335 | DOI | MR

[13] Witte N. S., “New transformations for {P}ainlevé's third transcendent”, Proc. Amer. Math. Soc., 132 (2004), 1649–1658, arXiv: math.CA/0210019 | DOI | MR | Zbl