The Classification of All Crossed Products $H_4 \# k[C_{n}]$
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the computational approach introduced in [Agore A.L., Bontea C.G., Militaru G., J. Algebra Appl. 12 (2013), 1250227, 24 pages] we classify all coalgebra split extensions of $H_4$ by $k[C_n]$, where $C_n$ is the cyclic group of order $n$ and $H_4$ is Sweedler's $4$-dimensional Hopf algebra. Equivalently, we classify all crossed products of Hopf algebras $H_4 \# k[C_{n}]$ by explicitly computing two classifying objects: the cohomological ‘group’ ${\mathcal H}^{2} ( k[C_{n}], H_4)$ and $\mathrm{Crp} ( k[C_{n}], H_4):=$ the set of types of isomorphisms of all crossed products $H_4 \# k[C_{n}]$. More precisely, all crossed products $H_4 \# k[C_n]$ are described by generators and relations and classified: they are $4n$-dimensional quantum groups $H_{4n, \lambda, t}$, parameterized by the set of all pairs $(\lambda, t)$ consisting of an arbitrary unitary map $t : C_n \to C_2$ and an $n$-th root $\lambda$ of $\pm 1$. As an application, the group of Hopf algebra automorphisms of $H_{4n, \lambda, t}$ is explicitly described.
Keywords: crossed product of Hopf algebras; split extension of Hopf algebras.
@article{SIGMA_2014_10_a48,
     author = {Ana-Loredana Agore and Costel-Gabriel Bontea and Gigel Militaru},
     title = {The {Classification} of {All} {Crossed} {Products} $H_4 \# k[C_{n}]$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a48/}
}
TY  - JOUR
AU  - Ana-Loredana Agore
AU  - Costel-Gabriel Bontea
AU  - Gigel Militaru
TI  - The Classification of All Crossed Products $H_4 \# k[C_{n}]$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a48/
LA  - en
ID  - SIGMA_2014_10_a48
ER  - 
%0 Journal Article
%A Ana-Loredana Agore
%A Costel-Gabriel Bontea
%A Gigel Militaru
%T The Classification of All Crossed Products $H_4 \# k[C_{n}]$
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a48/
%G en
%F SIGMA_2014_10_a48
Ana-Loredana Agore; Costel-Gabriel Bontea; Gigel Militaru. The Classification of All Crossed Products $H_4 \# k[C_{n}]$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a48/

[1] Adem A., Milgram R. J., Cohomology of finite groups, Grundlehren der Mathematischen Wissenschaften, 309, 2nd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[2] Agore A. L., Bontea C. G., Militaru G., “Classifying coalgebra split extensions of {H}opf algebras”, J. Algebra Appl., 12 (2013), 1250227, 24 pp., arXiv: 1207.0411 | DOI | MR | Zbl

[3] Agore A. L., Bontea C. G., Militaru G., “Classifying bicrossed products of {H}opf algebras”, Algebr. Represent. Theory, 17 (2014), 227–264, arXiv: 1205.6110 | DOI | MR

[4] Agore A. L., Militaru G., “Extending structures. {II}: {T}he quantum version”, J. Algebra, 336 (2011), 321–341, arXiv: 1011.2174 | DOI | MR | Zbl

[5] Andruskiewitsch N., “Notes on extensions of {H}opf algebras”, Canad. J. Math., 48 (1996), 3–42 | DOI | MR | Zbl

[6] Andruskiewitsch N., Devoto J., “Extensions of {H}opf algebras”, St. Petersburg Math. J., 7 (1996), 17–52 | MR

[7] Andruskiewitsch N., Natale S., “Examples of self-dual {H}opf algebras”, J. Math. Sci. Univ. Tokyo, 6 (1999), 181–215 | MR | Zbl

[8] Andruskiewitsch N., Schneider H. J., “Lifting of quantum linear spaces and pointed {H}opf algebras of order {$p^3$}”, J. Algebra, 209 (1998), 658–691, arXiv: math.QA/9803058 | DOI | MR | Zbl

[9] Brzeziński T., Hajac P. M., “Coalgebra extensions and algebra coextensions of {G}alois type”, Comm. Algebra, 27 (1999), 1347–1367, arXiv: q-alg/9708010 | DOI | MR | Zbl

[10] García G. A., Vay C., “Hopf algebras of dimension 16”, Algebr. Represent. Theory, 13 (2010), 383–405, arXiv: 0712.0405 | DOI | MR | Zbl

[11] Krop L., Classification of isomorphism types of Hopf algebras in a class of Abelian extensions, arXiv: 1211.5621

[12] Masuoka A., “Hopf algebra extensions and cohomology”, New Directions in {H}opf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 167–209 | MR | Zbl

[13] Montgomery S., Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[14] Sweedler M. E., “Cohomology of algebras over {H}opf algebras”, Trans. Amer. Math. Soc., 133 (1968), 205–239 | DOI | MR | Zbl