@article{SIGMA_2014_10_a47,
author = {Atsushi Fujioka and Takashi Kurose},
title = {Multi-Hamiltonian {Structures} on {Spaces} of {Closed} {Equicentroaffine} {Plane} {Curves} {Associated} to {Higher} {KdV} {Flows}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a47/}
}
TY - JOUR AU - Atsushi Fujioka AU - Takashi Kurose TI - Multi-Hamiltonian Structures on Spaces of Closed Equicentroaffine Plane Curves Associated to Higher KdV Flows JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a47/ LA - en ID - SIGMA_2014_10_a47 ER -
%0 Journal Article %A Atsushi Fujioka %A Takashi Kurose %T Multi-Hamiltonian Structures on Spaces of Closed Equicentroaffine Plane Curves Associated to Higher KdV Flows %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a47/ %G en %F SIGMA_2014_10_a47
Atsushi Fujioka; Takashi Kurose. Multi-Hamiltonian Structures on Spaces of Closed Equicentroaffine Plane Curves Associated to Higher KdV Flows. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a47/
[1] Anco S. C., “Bi-{H}amiltonian operators, integrable flows of curves using moving frames and geometric map equations”, J. Phys. A: Math. Gen., 39 (2006), 2043–2072, arXiv: nlin.SI/0512051 | DOI | MR | Zbl
[2] Anco S. C., “Hamiltonian flows of curves in {$G/{\rm SO}(N)$} and vector soliton equations of m{K}d{V} and sine-{G}ordon type”, SIGMA, 2 (2006), 044, 18 pp., arXiv: nlin.SI/0512046 | DOI | MR | Zbl
[3] Anco S. C., “Group-invariant soliton equations and bi-{H}amiltonian geometric curve flows in {R}iemannian symmetric spaces”, J. Geom. Phys., 58 (2008), 1–37, arXiv: nlin.SI/0703041 | DOI | MR | Zbl
[4] Anco S. C., “Hamiltonian curve flows in {L}ie groups {$G\subset {\rm U}(N)$} and vector {NLS}, m{K}d{V}, sine-{G}ordon soliton equations”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 223–250, arXiv: nlin.SI/0610075 | DOI | MR | Zbl
[5] Anco S. C., Asadi E., “Quaternionic soliton equations from {H}amiltonian curve flows in {${\mathbb{HP}}^n$}”, J. Phys. A: Math. Theor., 42 (2009), 485201, 25 pp., arXiv: 0905.4215 | DOI | MR | Zbl
[6] Anco S. C., Asadi E., “Symplectically invariant soliton equations from non-stretching geometric curve flows”, J. Phys. A: Math. Theor., 45 (2012), 475207, 37 pp., arXiv: 1206.4040 | DOI | MR | Zbl
[7] Anco S. C., Myrzakulov R., “Integrable generalizations of {S}chrödinger maps and {H}eisenberg spin models from {H}amiltonian flows of curves and surfaces”, J. Geom. Phys., 60 (2010), 1576–1603, arXiv: 0806.1360 | DOI | MR | Zbl
[8] Anco S. C., Vacaru S. I., “Curve flows in {L}agrange–{F}insler geometry, bi-{H}amiltonian structures and solitons”, J. Geom. Phys., 59 (2009), 79–103, arXiv: math-ph/0609070 | DOI | MR | Zbl
[9] Calini A., Ivey T., Marí-Beffa G., “Remarks on {K}d{V}-type flows on star-shaped curves”, Phys. D, 238 (2009), 788–797, arXiv: 0808.3593 | DOI | MR | Zbl
[10] Chou K.-S., Qu C., “The {K}d{V} equation and motion of plane curves”, J. Phys. Soc. Japan, 70 (2001), 1912–1916 | DOI | MR | Zbl
[11] Chou K.-S., Qu C., “Integrable equations arising from motions of plane curves”, Phys. D, 162 (2002), 9–33 | DOI | MR | Zbl
[12] Chou K.-S., Qu C., “Integrable motions of space curves in affine geometry”, Chaos Solitons Fractals, 14 (2002), 29–44 | DOI | MR | Zbl
[13] Fujioka A., Kurose T., “Motions of curves in the complex hyperbola and the {B}urgers hierarchy”, Osaka J. Math., 45 (2008), 1057–1065 | MR | Zbl
[14] Fujioka A., Kurose T., “Geometry of the space of closed curves in the complex hyperbola”, Kyushu J. Math., 63 (2009), 161–165 | DOI | MR | Zbl
[15] Fujioka A., Kurose T., “Hamiltonian formalism for the higher {K}d{V} flows on the space of closed complex equicentroaffine curves”, Int. J. Geom. Methods Mod. Phys., 7 (2010), 165–175 | DOI | MR | Zbl
[16] Hasimoto H., “A soliton on a vortex filament”, J. Fluid Mech., 51 (1972), 477–485 | DOI | Zbl
[17] Kruskal M. D., Miura R. M., Gardner C. S., Zabusky N. J., “Korteweg–de {V}ries equation and generalizations. V: {U}niqueness and nonexistence of polynomial conservation laws”, J. Math. Phys., 11 (1970), 952–960 | DOI | MR | Zbl
[18] Kulish P. P., Reiman A. G., “Hierarchy of symplectic forms for the {S}chrödinger equation and for the {D}irac equation on a line”, J. Sov. Math., 22 (1983), 1627–1637 | DOI | Zbl
[19] Lamb Jr. G. L., “Solitons and the motion of helical curves”, Phys. Rev. Lett., 37 (1976), 235–237 | DOI | MR
[20] Lax P. D., “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl
[21] Liu Y., Qu C., Zhang Y., “Stability of periodic peakons for the modified {$\mu$}-{C}amassa–{H}olm equation”, Phys. D, 250 (2013), 66–74 | DOI | MR | Zbl
[22] Magri F., “A simple model of the integrable {H}amiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[23] Marí Beffa G., “Geometric realizations of bi-{H}amiltonian completely integrable systems”, SIGMA, 4 (2008), 034, 23 pp., arXiv: 0803.3866 | DOI | MR | Zbl
[24] Marí Beffa G., Sanders J. A., Wang J. P., “Integrable systems in three-dimensional {R}iemannian geometry”, J. Nonlinear Sci., 12 (2002), 143–167 | DOI | MR | Zbl
[25] Miura R. M., Gardner C. S., Kruskal M. D., “Korteweg–de {V}ries equation and generalizations. II: {E}xistence of conservation laws and constants of motion”, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR | Zbl
[26] Newell A. C., Solitons in mathematics and physics, CBMS-NSF Regional Conference Series in Applied Mathematics, 48, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1985 | DOI | MR
[27] Olver P. J., Applications of {L}ie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR | Zbl
[28] Pinkall U., “Hamiltonian flows on the space of star-shaped curves”, Results Math., 27 (1995), 328–332 | DOI | MR | Zbl
[29] Rogers C., Schief W. K., Bäcklund and {D}arboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | DOI | MR | Zbl
[30] Sanders J. A., Wang J. P., “Integrable systems in {$n$}-dimensional {R}iemannian geometry”, Mosc. Math. J., 3 (2003), 1369–1393, arXiv: math.AP/0301212 | MR | Zbl
[31] Squires S. A., Marí Beffa G., “Integrable systems associated to curves in flat {G}alilean and {M}inkowski spaces”, Appl. Anal., 89 (2010), 571–592 | DOI | MR | Zbl
[32] Terng C.-L., Thorbergsson G., “Completely integrable curve flows on adjoint orbits”, Results Math., 40 (2001), 286–309, arXiv: math.DG/0108154 | DOI | MR | Zbl