@article{SIGMA_2014_10_a46,
author = {Katsuyuki Naoi},
title = {Graded {Limits} of {Minimal} {Affinizations} in {Type} $D$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a46/}
}
Katsuyuki Naoi. Graded Limits of Minimal Affinizations in Type $D$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a46/
[1] Chari V., “Minimal affinizations of representations of quantum groups: the rank {$2$} case”, Publ. Res. Inst. Math. Sci., 31 (1995), 873–911, arXiv: hep-th/9410022 | DOI | MR | Zbl
[2] Chari V., “On the fermionic formula and the {K}irillov–{R}eshetikhin conjecture”, Int. Math. Res. Not., 2001 (2001), 629–654, arXiv: math.QA/0006090 | DOI | MR | Zbl
[3] Chari V., “Braid group actions and tensor products”, Int. Math. Res. Not., 2002 (2002), 357–382, arXiv: math.QA/0106241 | DOI | MR | Zbl
[4] Chari V., Greenstein J., “Minimal affinizations as projective objects”, J. Geom. Phys., 61 (2011), 594–609, arXiv: 1009.4494 | DOI | MR | Zbl
[5] Chari V., Moura A., “The restricted {K}irillov–{R}eshetikhin modules for the current and twisted current algebras”, Comm. Math. Phys., 266 (2006), 431–454, arXiv: math.RT/0507584 | DOI | MR | Zbl
[6] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[7] Chari V., Pressley A., “Minimal affinizations of representations of quantum groups: the nonsimply-laced case”, Lett. Math. Phys., 35 (1995), 99–114 | DOI | MR | Zbl
[8] Chari V., Pressley A., “Quantum affine algebras and their representations”, Representations of Groups ({B}anff, {AB}, 1994), CMS Conf. Proc., 16, Amer. Math. Soc., Providence, RI, 1995, 59–78, arXiv: hep-th/9411145 | MR | Zbl
[9] Chari V., Pressley A., “Minimal affinizations of representations of quantum groups: the irregular case”, Lett. Math. Phys., 36 (1996), 247–266 | DOI | MR | Zbl
[10] Chari V., Pressley A., “Minimal affinizations of representations of quantum groups: the simply laced case”, J. Algebra, 184 (1996), 1–30, arXiv: hep-th/9410036 | DOI | MR | Zbl
[11] Fourier G., Littelmann P., “Tensor product structure of affine {D}emazure modules and limit constructions”, Nagoya Math. J., 182 (2006), 171–198, arXiv: math.RT/0412432 | MR | Zbl
[12] Hernandez D., “On minimal affinizations of representations of quantum groups”, Comm. Math. Phys., 276 (2007), 221–259, arXiv: math.QA/0607527 | DOI | MR | Zbl
[13] Hernandez D., Leclerc B., “Cluster algebras and quantum affine algebras”, Duke Math. J., 154 (2010), 265–341, arXiv: 0903.1452 | DOI | MR | Zbl
[14] Joseph A., “On the {D}emazure character formula”, Ann. Sci. École Norm. Sup. (4), 18 (1985), 389–419 | MR | Zbl
[15] Kac V. G., Infinite-dimensional {L}ie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[16] Lakshmibai V., Littelmann P., Magyar P., “Standard monomial theory for {B}ott–{S}amelson varieties”, Compositio Math., 130 (2002), 293–318, arXiv: alg-geom/9703020 | DOI | MR | Zbl
[17] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | MR | Zbl
[18] Moura A., “Restricted limits of minimal affinizations”, Pacific J. Math., 244 (2010), 359–397, arXiv: 0812.2238 | DOI | MR | Zbl
[19] Mukhin E., Young C. A. S., “Affinization of category ${\mathcal O}$ for quantum groups”, Trans. Amer. Math. Soc. (to appear) , arXiv: 1204.2769 | MR
[20] Naoi K., “Weyl modules, {D}emazure modules and finite crystals for non-simply laced type”, Adv. Math., 229 (2012), 875–934, arXiv: 1012.5480 | DOI | MR | Zbl
[21] Naoi K., “Demazure modules and graded limits of minimal affinizations”, Represent. Theory, 17 (2013), 524–556, arXiv: 1210.0175 | DOI | MR
[22] Sam S. V., “Jacobi–Trudi determinants and characters of minimal affinizations”, Pacific J. Math. (to appear) , arXiv: 1307.6630