@article{SIGMA_2014_10_a44,
author = {Ling-Ling Xue and Qing Ping Liu},
title = {B\"acklund{\textendash}Darboux {Transformations} and {Discretizations} of {Super} {KdV} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/}
}
TY - JOUR AU - Ling-Ling Xue AU - Qing Ping Liu TI - Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/ LA - en ID - SIGMA_2014_10_a44 ER -
Ling-Ling Xue; Qing Ping Liu. Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/
[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl
[2] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. {T}he consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[3] Cieśliński J. L., “Algebraic construction of the {D}arboux matrix revisited”, J. Phys. A: Math. Theor., 42 (2009), 404003, 40 pp., arXiv: 0904.3987 | DOI | MR | Zbl
[4] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[5] Grahovski G. G., Mikhailov A. V., “Integrable discretisations for a class of nonlinear {S}chrödinger equations on {G}rassmann algebras”, Phys. Lett. A, 377 (2013), 3254–3259, arXiv: 1303.1853 | DOI | MR
[6] Holod P. I., Pakuliak S. Z., “On the superextension of the {K}adomtsev–{P}etviashvili equation and finite-gap solutions of {K}orteweg–de {V}ries superequations”, Problems of Modern Quantum Field Theory ({A}lushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 107–116 | DOI | MR
[7] Kupershmidt B. A., “A super {K}orteweg–de {V}ries equation: an integrable system”, Phys. Lett. A, 102 (1984), 213–215 | DOI | MR
[8] Levi D., “Nonlinear differential-difference equations as {B}äcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 | DOI | MR | Zbl
[9] Levi D., “On a new {D}arboux transformation for the construction of exact solutions of the {S}chrödinger equation”, Inverse Problems, 4 (1988), 165–172 | DOI | MR | Zbl
[10] Levi D., Benguria R., “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77 (1980), 5025–5027 | DOI | MR | Zbl
[11] Manin Yu. I., Radul A. O., “A supersymmetric extension of the {K}adomtsev–{P}etviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl
[12] Mathieu P., “Superconformal algebra and supersymmetric {K}orteweg–de {V}ries equation”, Phys. Lett. B, 203 (1988), 287–291 | DOI | MR
[13] Mathieu P., “Supersymmetric extension of the {K}orteweg–de {V}ries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl
[14] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[15] Nijhoff F. W., Discrete systems and integrability, Lecture {N}otes, {M}ath3491/5491, University of Leeds, 2010
[16] Nimmo J. J. C., “Darboux transformations from reductions of the {KP} hierarchy”, Nonlinear Evolution Equations Dynamical Systems, NEEDS'94 (Los {A}lamos, {NM}), World Sci. Publ., River Edge, NJ, 1995, 168–177, arXiv: solv-int/9410001 | MR | Zbl
[17] Roelofs G. H. M., Kersten P. H. M., “Supersymmetric extensions of the nonlinear {S}chrödinger equation: symmetries and coverings”, J. Math. Phys., 33 (1992), 2185–2206 | DOI | MR | Zbl
[18] Suris Yu. B., The problem of integrable discretization: {H}amiltonian approach, Progress in Mathematics, 219, Birkhäuser Verlag, Basel, 2003 | DOI | MR | Zbl
[19] Xue L. L., Levi D., Liu Q. P., “Supersymmetric {K}d{V} equation: {D}arboux transformation and discrete systems”, J. Phys. A: Math. Theor., 46 (2013), 502001, 11 pp., arXiv: 1311.0152 | DOI | MR | Zbl
[20] Zhou R. G., Private communication, 2013