Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a generalized super KdV equation, three Darboux transformations and the corresponding Bäcklund transformations are constructed. The compatibility of these Darboux transformations leads to three discrete systems and their Lax representations. The reduction of one of the Bäcklund–Darboux transformations and the corresponding discrete system are considered for Kupershmidt's super KdV equation. When all the odd variables vanish, a nonlinear superposition formula is obtained for Levi's Bäcklund transformation for the KdV equation.
Keywords: super integrable systems; KdV; Bäcklund–Darboux transformations; discrete integrable systems.
@article{SIGMA_2014_10_a44,
     author = {Ling-Ling Xue and Qing Ping Liu},
     title = {B\"acklund{\textendash}Darboux {Transformations} and {Discretizations} of {Super} {KdV} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/}
}
TY  - JOUR
AU  - Ling-Ling Xue
AU  - Qing Ping Liu
TI  - Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/
LA  - en
ID  - SIGMA_2014_10_a44
ER  - 
%0 Journal Article
%A Ling-Ling Xue
%A Qing Ping Liu
%T Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/
%G en
%F SIGMA_2014_10_a44
Ling-Ling Xue; Qing Ping Liu. Bäcklund–Darboux Transformations and Discretizations of Super KdV Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a44/

[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl

[2] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. {T}he consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[3] Cieśliński J. L., “Algebraic construction of the {D}arboux matrix revisited”, J. Phys. A: Math. Theor., 42 (2009), 404003, 40 pp., arXiv: 0904.3987 | DOI | MR | Zbl

[4] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI

[5] Grahovski G. G., Mikhailov A. V., “Integrable discretisations for a class of nonlinear {S}chrödinger equations on {G}rassmann algebras”, Phys. Lett. A, 377 (2013), 3254–3259, arXiv: 1303.1853 | DOI | MR

[6] Holod P. I., Pakuliak S. Z., “On the superextension of the {K}adomtsev–{P}etviashvili equation and finite-gap solutions of {K}orteweg–de {V}ries superequations”, Problems of Modern Quantum Field Theory ({A}lushta, 1989), Res. Rep. Phys., Springer, Berlin, 1989, 107–116 | DOI | MR

[7] Kupershmidt B. A., “A super {K}orteweg–de {V}ries equation: an integrable system”, Phys. Lett. A, 102 (1984), 213–215 | DOI | MR

[8] Levi D., “Nonlinear differential-difference equations as {B}äcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 | DOI | MR | Zbl

[9] Levi D., “On a new {D}arboux transformation for the construction of exact solutions of the {S}chrödinger equation”, Inverse Problems, 4 (1988), 165–172 | DOI | MR | Zbl

[10] Levi D., Benguria R., “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77 (1980), 5025–5027 | DOI | MR | Zbl

[11] Manin Yu. I., Radul A. O., “A supersymmetric extension of the {K}adomtsev–{P}etviashvili hierarchy”, Comm. Math. Phys., 98 (1985), 65–77 | DOI | MR | Zbl

[12] Mathieu P., “Superconformal algebra and supersymmetric {K}orteweg–de {V}ries equation”, Phys. Lett. B, 203 (1988), 287–291 | DOI | MR

[13] Mathieu P., “Supersymmetric extension of the {K}orteweg–de {V}ries equation”, J. Math. Phys., 29 (1988), 2499–2506 | DOI | MR | Zbl

[14] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[15] Nijhoff F. W., Discrete systems and integrability, Lecture {N}otes, {M}ath3491/5491, University of Leeds, 2010

[16] Nimmo J. J. C., “Darboux transformations from reductions of the {KP} hierarchy”, Nonlinear Evolution Equations Dynamical Systems, NEEDS'94 (Los {A}lamos, {NM}), World Sci. Publ., River Edge, NJ, 1995, 168–177, arXiv: solv-int/9410001 | MR | Zbl

[17] Roelofs G. H. M., Kersten P. H. M., “Supersymmetric extensions of the nonlinear {S}chrödinger equation: symmetries and coverings”, J. Math. Phys., 33 (1992), 2185–2206 | DOI | MR | Zbl

[18] Suris Yu. B., The problem of integrable discretization: {H}amiltonian approach, Progress in Mathematics, 219, Birkhäuser Verlag, Basel, 2003 | DOI | MR | Zbl

[19] Xue L. L., Levi D., Liu Q. P., “Supersymmetric {K}d{V} equation: {D}arboux transformation and discrete systems”, J. Phys. A: Math. Theor., 46 (2013), 502001, 11 pp., arXiv: 1311.0152 | DOI | MR | Zbl

[20] Zhou R. G., Private communication, 2013