Vector Polynomials and a Matrix Weight Associated to Dihedral Groups
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The space of polynomials in two real variables with values in a 2-dimensional irreducible module of a dihedral group is studied as a standard module for Dunkl operators. The one-parameter case is considered (omitting the two-parameter case for even dihedral groups). The matrix weight function for the Gaussian form is found explicitly by solving a boundary value problem, and then computing the normalizing constant. An orthogonal basis for the homogeneous harmonic polynomials is constructed. The coefficients of these polynomials are found to be balanced terminating ${}_4F_3$-series.
Keywords: standard module; Gaussian weight.
@article{SIGMA_2014_10_a43,
     author = {Charles F. Dunkl},
     title = {Vector {Polynomials} and {a~Matrix} {Weight} {Associated} to {Dihedral} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a43/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - Vector Polynomials and a Matrix Weight Associated to Dihedral Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a43/
LA  - en
ID  - SIGMA_2014_10_a43
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T Vector Polynomials and a Matrix Weight Associated to Dihedral Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a43/
%G en
%F SIGMA_2014_10_a43
Charles F. Dunkl. Vector Polynomials and a Matrix Weight Associated to Dihedral Groups. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a43/

[1] Dunkl C. F., “Differential-difference operators and monodromy representations of {H}ecke algebras”, Pacific J. Math., 159 (1993), 271–298 | DOI | MR | Zbl

[2] Dunkl C. F., “Vector-valued polynomials and a matrix weight function with {$B_2$}-action”, SIGMA, 9 (2013), 007, 23 pp., arXiv: 1210.1177 | DOI | MR | Zbl

[3] Dunkl C. F., Dunkl operators and related special functions, arXiv: 1210.3010

[4] Etingof P., Stoica E., “Unitary representations of rational {C}herednik algebras”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl

[5] Olver F. W. J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), N{IST} handbook of mathematical functions, U.S. Department of Commerce National Institute of Standards and Technology, Washington, DC, 2010