Functions Characterizing the Ground State of the XXZ Spin-1/2 Chain in the Thermodynamic Limit
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish several properties of the solutions to the linear integral equations describing the infinite volume properties of the XXZ spin-$1/2$ chain in the disordered regime. In particular, we obtain lower and upper bounds for the dressed energy, dressed charge and density of Bethe roots. Furthermore, we establish that given a fixed external magnetic field (or a fixed magnetization) there exists a unique value of the boundary of the Fermi zone.
Keywords: linear integral equations; quantum integrable models; dressed quantities.
@article{SIGMA_2014_10_a42,
     author = {Maxime Dugave and Frank G\"ohmann and Karol Kajetan Kozlowski},
     title = {Functions {Characterizing} the {Ground} {State} of the {XXZ} {Spin-1/2} {Chain} in~the {Thermodynamic} {Limit}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a42/}
}
TY  - JOUR
AU  - Maxime Dugave
AU  - Frank Göhmann
AU  - Karol Kajetan Kozlowski
TI  - Functions Characterizing the Ground State of the XXZ Spin-1/2 Chain in the Thermodynamic Limit
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a42/
LA  - en
ID  - SIGMA_2014_10_a42
ER  - 
%0 Journal Article
%A Maxime Dugave
%A Frank Göhmann
%A Karol Kajetan Kozlowski
%T Functions Characterizing the Ground State of the XXZ Spin-1/2 Chain in the Thermodynamic Limit
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a42/
%G en
%F SIGMA_2014_10_a42
Maxime Dugave; Frank Göhmann; Karol Kajetan Kozlowski. Functions Characterizing the Ground State of the XXZ Spin-1/2 Chain in the Thermodynamic Limit. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a42/

[1] Bazhanov V. V., Lukyanov S. L., Zamolodchikov A. B., “Integrable structure of conformal field theory. II: {${\rm Q}$}-operator and {DDV} equation”, Comm. Math. Phys., 190 (1997), 247–278, arXiv: hep-th/9604044 | DOI | MR | Zbl

[2] Bethe H., “Zur Theorie der Metalle: Eigenwerte und Eigenfunktionen der linearen Atomkette”, Z. Phys., 71 (1931), 205–226 | DOI

[3] Boos H., Jimbo M., Miwa T., Smirnov F., “Hidden {G}rassmann structure in the {XXZ} model {IV}: {CFT} limit”, Comm. Math. Phys., 299 (2010), 825–866, arXiv: 0911.3731 | DOI | MR | Zbl

[4] de Vega H. J., Woynarovich F., “Method for calculating finite size corrections in {B}ethe ansatz systems: {H}eisenberg chain and six-vertex model”, Nuclear Phys. B, 251 (1985), 439–456 | DOI | MR

[5] des Cloizeaux J., Gaudin M., “Anisotropic linear magnetic chain”, J. Math. Phys., 7 (1966), 1384–1400 | DOI

[6] des Cloizeaux J., Pearson J. J., “Spin-wave spectrum of the antiferromagnetic linear chain”, Phys. Rev., 128 (1962), 2131–2135 | DOI

[7] Destri C., de Vega H. J., “Unified approach to thermodynamic {B}ethe ansatz and finite size corrections for lattice models and field theories”, Nuclear Phys. B, 438 (1995), 413–454, arXiv: hep-th/9407117 | DOI | MR | Zbl

[8] Dugave M., Göhmann F., Kozlowski K. K., “Thermal form factors of the XXZ chain and the large-distance asymptotics of its temperature dependent correlation functions”, J. Stat. Mech. Theory Exp., 2013 (2013), P06002, 52 pp., arXiv: 1305.0118 | DOI | MR

[9] Dugave M., Göhmann F., Kozlowski K. K., Low-temperature large-distance asymptotics of the transversal two-point functions of the {XXZ} chain, arXiv: 1401.4132

[10] Gaudin M., “Thermodynamics of a Heisenberg–Ising ring for $\Delta \geq 1$”, Phys. Rev. Lett., 26 (1971), 1301–1304 | DOI

[11] Griffiths R. B., “Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain”, Phys. Rev., 133 (1964), 768–775 | DOI

[12] Hulthén L., “Über das Austauschproblem eines Kristalles”, Arkiv Mat. Astron. Fys. A, 26 (1938), 1–106

[13] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “Algebraic {B}ethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009 (2009), P04003, 66 pp., arXiv: 0808.0227 | DOI | MR

[14] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “On the thermodynamic limit of form factors in the massless {XXZ} {H}eisenberg chain”, J. Math. Phys., 50 (2009), 095209, 24 pp., arXiv: 0903.2916 | DOI | MR | Zbl

[15] Kitanine N., Kozlowski K. K., Maillet J. M., Slavnov N. A., Terras V., “Riemann–{H}ilbert approach to a generalised sine kernel and applications”, Comm. Math. Phys., 291 (2009), 691–761, arXiv: 0805.4586 | DOI | MR | Zbl

[16] Klümper A., “Thermodynamics of the anisotropic spin-$1/2$ Heisenberg chain and related quantum chains”, Z. Phys. B, 91 (1993), 507–519, arXiv: cond-mat/9306019 | DOI

[17] Korepin V. E., Bogoliubov N. M., Izergin A. G., Quantum inverse scattering method and correlation functions, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[18] Kozlowski K. K., “Low-{$T$} asymptotic expansion of the solution to the {Y}ang–{Y}ang equation”, Lett. Math. Phys., 104 (2014), 55–74, arXiv: 1112.6199 | DOI | MR | Zbl

[19] Kulish P. P., Reshetikhin N. Yu., “Generalized {H}eisenberg ferromagnet and the {G}ross–{N}eveu model”, Soviet Phys. JETP, 80 (1981), 214–228 | MR

[20] Lieb E. H., Wu F. Y., “Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension”, Phys. Rev. Lett., 20 (1968), 1445–1448 | DOI

[21] Orbach R., “Linear antiferromagnetic chain with anisotropic coupling”, Phys. Rev., 112 (1958), 309–316 | DOI

[22] Takahashi M., “One-dimensional Heisenberg model at finite temperature”, Progr. Theoret. Phys., 46 (1971), 401–415 | DOI

[23] Walker L. R., “Antiferromagnetic linear chain”, Phys. Rev., 116 (1959), 1089–1090 | DOI

[24] Yang C. N., Yang C. P., “One-dimensional chain of anisotropic spin-spin interactions. II: Properties of the ground-state energy per lattice site for an infinite system”, Phys. Rev., 150 (1966), 327–339 | DOI | MR

[25] Yang C. N., Yang C. P., “Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction”, J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl

[26] Zamolodchikov Al. B., “Thermodynamic {B}ethe ansatz in relativistic models: scaling {$3$}-state {P}otts and {L}ee–{Y}ang models”, Nuclear Phys. B, 342 (1990), 695–720 | DOI | MR