A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Employing the fact that the geometry of the $N$-qubit ($N \geq 2$) Pauli group is embodied in the structure of the symplectic polar space $\mathcal{W}(2N-1,2)$ and using properties of the Lagrangian Grassmannian $\mathrm{LGr}(N,2N)$ defined over the smallest Galois field, it is demonstrated that there exists a bijection between the set of maximum sets of mutually commuting elements of the $N$-qubit Pauli group and a certain subset of elements of the $2^{N-1}$-qubit Pauli group. In order to reveal finer traits of this correspondence, the cases $N=3$ (also addressed recently by Lévay, Planat and Saniga [J. High Energy Phys. 2013 (2013), no. 9, 037, 35 pages]) and $N=4$ are discussed in detail. As an apt application of our findings, we use the stratification of the ambient projective space $\mathrm{PG}(2^N-1,2)$ of the $2^{N-1}$-qubit Pauli group in terms of $G$-orbits, where $G \equiv \mathrm{SL}(2,2)\times \mathrm{SL}(2,2)\times\cdots\times \mathrm{SL}(2,2)\rtimes S_N$, to decompose $\underline{\pi}(\mathrm{LGr}(N,2N))$ into non-equivalent orbits. This leads to a partition of $\mathrm{LGr}(N,2N)$ into distinguished classes that can be labeled by elements of the above-mentioned Pauli groups.
Keywords: multi-qubit Pauli groups; symplectic polar spaces $\mathcal{W}(2N-1,2)$; Lagrangian Grassmannians $\mathrm{LGr}(N,2N)$ over the smallest Galois field.
@article{SIGMA_2014_10_a40,
     author = {Fr\'ed\'eric Holweck and Metod Saniga and P\'eter L\'evay},
     title = {A {Notable} {Relation} between $N${-Qubit} and $2^{N-1}${-Qubit} {Pauli} {Groups} via {Binary} $\mathrm{LGr}(N,2N)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a40/}
}
TY  - JOUR
AU  - Frédéric Holweck
AU  - Metod Saniga
AU  - Péter Lévay
TI  - A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a40/
LA  - en
ID  - SIGMA_2014_10_a40
ER  - 
%0 Journal Article
%A Frédéric Holweck
%A Metod Saniga
%A Péter Lévay
%T A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a40/
%G en
%F SIGMA_2014_10_a40
Frédéric Holweck; Metod Saniga; Péter Lévay. A Notable Relation between $N$-Qubit and $2^{N-1}$-Qubit Pauli Groups via Binary $\mathrm{LGr}(N,2N)$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a40/

[1] Alexeev B., Forbes M. A., Tsimerman J., “Tensor rank: some lower and upper bounds”, 26th {A}nnual {IEEE} {C}onference on {C}omputational {C}omplexity (Los Alamitos, CA, 2011), IEEE Computer Soc., 283–291, arXiv: 1102.0072 | MR

[2] Bremner M. R., Stavrou S. G., “Canonical forms of {$2\times 2\times 2$} and {$2\times 2\times 2\times 2$} arrays over {$\mathbb{F}_2$} and {$\mathbb{F}_3$}”, Linear Multilinear Algebra, 61 (2013), 986–997, arXiv: 1112.0298 | DOI | MR | Zbl

[3] Cameron P. J., Projective and polar spaces, QMW Mathematics Notes, 13, Queen Mary and Westfield College, London, 1991 http://www.maths.qmul.ac.uk/\allowbreakp̃jc/pps/

[4] Carrillo-Pacheco J., Zaldivar F., “On {L}agrangian–{G}rassmannian codes”, Des. Codes Cryptogr., 60 (2011), 291–298 | DOI | MR | Zbl

[5] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 3rd ed., Springer, New York, 2007 | DOI | MR | Zbl

[6] Gel'fand I. M., Kapranov M. M., Zelevinsky A. V., Discriminants, resultants, and multidimensional determinants, Mathematics: Theory Applications, Birkhäuser Boston, Inc., Boston, MA, 1994 | DOI | MR

[7] Havlicek H., Odehnal B., Saniga M., “Factor-group-generated polar spaces and (multi-)qudits”, SIGMA, 5 (2009), 096, 15 pp., arXiv: 0903.5418 | DOI | MR | Zbl

[8] Havlicek H., Odehnal B., Saniga M., “On invariant notions of {S}egre varieties in binary projective spaces”, Des. Codes Cryptogr., 62 (2012), 343–356, arXiv: 1006.4492 | DOI | MR | Zbl

[9] Holtz O., Schneider H., “Open problems on {GKK} {$\tau$}-matrices”, Linear Algebra Appl., 345 (2002), 263–267, arXiv: math.RA/0109030 | DOI | MR | Zbl

[10] Holtz O., Sturmfels B., “Hyperdeterminantal relations among symmetric principal minors”, J. Algebra, 316 (2007), 634–648, arXiv: math.RA/0604374 | DOI | MR | Zbl

[11] Krutelevich S., “Jordan algebras, exceptional groups, and {B}hargava composition”, J. Algebra, 314 (2007), 924–977, arXiv: math.NT/0411104 | DOI | MR | Zbl

[12] Landsberg J. M., Tensors: geometry and applications, Graduate Studies in Mathematics, 128, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl

[13] Lavrauw M., Sheekey J., “Orbits of the stabiliser group of the {S}egre variety product of three projective lines”, Finite Fields Appl., 26 (2014), 1–6, arXiv: 1207.3972 | DOI | MR | Zbl

[14] Lévay P., Planat M., Saniga M., “Grassmannian connection between three-and four-qubit observables, Mermin's contextuality and black holes”, J. High Energy Phys., 2013:9 (2013), 037, 35 pp., arXiv: 1305.5689 | DOI

[15] Lin S., Sturmfels B., “Polynomial relations among principal minors of a {$4\times 4$}-matrix”, J. Algebra, 322 (2009), 4121–4131, arXiv: 0812.0601 | DOI | MR | Zbl

[16] Mermin N. D., “Hidden variables and the two theorems of {J}ohn {B}ell”, Rev. Modern Phys., 65 (1993), 803–815 | DOI | MR

[17] Oeding L., G-varieties and the principal minors of symmetric matrices, Ph. D. Thesis, Texas A University, 2009 | MR

[18] Oeding L., “Set-theoretic defining equations of the tangential variety of the {S}egre variety”, J. Pure Appl. Algebra, 215 (2011), 1516–1527, arXiv: 0911.5276 | DOI | MR | Zbl

[19] Oeding L., “Set-theoretic defining equations of the variety of principal minors of symmetric matrices”, Algebra Number Theory, 5 (2011), 75–109, arXiv: 0809.4236 | DOI | MR | Zbl

[20] Planat M., Pauli graphs when the {H}ilbert space dimension contains a square: why the {D}edekind psi function?, J. Phys. A: Math. Theor., 44 (2011), 045301, 16 pp., arXiv: 1009.3858 | DOI | MR | Zbl

[21] Planat M., Saniga M., “On the {P}auli graphs on {$N$}-qudits”, Quantum Inf. Comput., 8 (2008), 127–146, arXiv: quant-ph/0701211 | MR | Zbl

[22] Saniga M., Lévay P., Pracna P., “Charting the real four-qubit {P}auli group via ovoids of a hyperbolic quadric of {${\rm PG}(7,2)$}”, J. Phys. A: Math. Theor., 45 (2012), 295304, 16 pp., arXiv: 1202.2973 | DOI | MR | Zbl

[23] Saniga M., Planat M., “Multiple qubits as symplectic polar spaces of order two”, Adv. Stud. Theor. Phys., 1 (2007), 1–4, arXiv: quant-ph/0612179 | MR | Zbl

[24] Saniga M., Planat M., Prachna P., “Projective curves over a ring that includes two-qubits”, Theoret. and Math. Phys., 155 (2008), 905–913, arXiv: quant-ph/0611063 | DOI | MR | Zbl

[25] Thas J. A., “Ovoids and spreads of finite classical polar spaces”, Geom. Dedicata, 10 (1981), 135–143 | DOI | MR | Zbl

[26] Thas K., “The geometry of generalized Pauli operators of $N$-qudit Hilbert space, and an application to MUBs”, Europhys. Lett., 86 (2009), 60005, 3 pp. | DOI

[27] Waegell M., Primitive nonclassical structures of the $N$-qubit Pauli group, arXiv: 1310.3419