Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It has recently been shown within a formal axiomatic framework using a definition of four-momentum based on the Stückelberg–Feynman–Sudarshan–Recami “switching principle” that Einstein's relativistic dynamics is logically consistent with the existence of interacting faster-than-light inertial particles. Our results here show, using only basic natural assumptions on dynamics, that this definition is the only possible way to get a consistent theory of such particles moving within the geometry of Minkowskian spacetime. We present a strictly formal proof from a streamlined axiom system that given any slow or fast inertial particle, all inertial observers agree on the value of $\mathsf{m}\cdot \sqrt{|1-v^2|}$, where $\mathsf{m}$ is the particle's relativistic mass and $v$ its speed. This confirms formally the widely held belief that the relativistic mass and momentum of a positive-mass faster-than-light particle must decrease as its speed increases.
Keywords: special relativity; dynamics; faster-than-light particles; superluminal motion; tachyons; axiomatic method; first-order logic.
@article{SIGMA_2014_10_a4,
     author = {Judit X. Madar\'asz and Mike Stannett and Gergely Sz\'ekely},
     title = {Why {Do} the {Relativistic} {Masses} and {Momenta} of {Faster-than-Light} {Particles} {Decrease} as their {Speeds} {Increase?}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a4/}
}
TY  - JOUR
AU  - Judit X. Madarász
AU  - Mike Stannett
AU  - Gergely Székely
TI  - Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a4/
LA  - en
ID  - SIGMA_2014_10_a4
ER  - 
%0 Journal Article
%A Judit X. Madarász
%A Mike Stannett
%A Gergely Székely
%T Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a4/
%G en
%F SIGMA_2014_10_a4
Judit X. Madarász; Mike Stannett; Gergely Székely. Why Do the Relativistic Masses and Momenta of Faster-than-Light Particles Decrease as their Speeds Increase?. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a4/

[1] Aharonov Y., Erez N., Reznik B., “Superoscillations and tunneling times”, Phys. Rev. A, 65 (2002), 052124, 5 pp., arXiv: quant-ph/0110104 | DOI | MR

[2] Andréka H., Madarász J. X., Németi I., On the logical structure of relativity theories, {R}esearch report, Alfréd Rényi Institute of Mathematics, Hungar. Acad. Sci., Budapest, 2002 http://www.math-inst.hu/pub/algebraic-logic/Contents.html

[3] Andréka H., Madarász J. X., Németi I., Székely G., “Axiomatizing relativistic dynamics without conservation postulates”, Studia Logica, 89 (2008), 163–186, arXiv: 0801.4870 | DOI | MR | Zbl

[4] Arntzenius F., “Causal paradoxes in special relativity”, British J. Philos. Sci., 41 (1990), 223–243 | DOI | MR

[5] Bilaniuk O. M.P., Deshpande V. K., Sudarshan E. C. G., ““{M}eta” relativity”, Amer. J. Phys., 30 (1962), 718–723 | DOI | MR

[6] Chashchina O. I., Silagadze Z. K., “Breaking the light speed barrier”, Acta Phys. Polon. B, 43 (2012), 1917–1952, arXiv: 1112.4714 | DOI

[7] d'Inverno R., Introducing {E}instein's relativity, Oxford University Press, New York, 1992

[8] Feinberg G., “Possibility of faster-than-light particles”, Phys. Rev., 159 (1967), 1089–1105 | DOI

[9] Feynman R. P., “The theory of positrons”, Phys. Rev., 76 (1949), 749–759 | DOI | MR | Zbl

[10] Firk F. W. K., Introduction to relativistic collisions, arXiv: 1011.1943

[11] Geroch R., Faster than light?, Advances in {L}orentzian Geometry, AMS/IP Stud. Adv. Math., 49, Amer. Math. Soc., Providence, RI, 2011, 59–69, arXiv: 1005.1614 | MR | Zbl

[12] Jentschura U. D., Wundt B. J., Neutrino helicity reversal and fundamental symmetries, arXiv: 1206.6342

[13] Kleppner D., Kolenkow R. J., An introduction to mechanics, Cambridge University Press, Cambridge, 2010 | Zbl

[14] Longhi S., Laporta P., Belmonte M., Recami E., “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps”, Phys. Rev. E, 65 (2002), 046610, 6 pp., arXiv: physics/0201013 | DOI

[15] Madarász J. X., Székely G., The existence of superluminal particles is consistent with relativistic dynamics, arXiv: 1303.0399

[16] Nikolić H., “Causal paradoxes: a conflict between relativity and the arrow of time”, Found. Phys. Lett., 19 (2006), 259–267, arXiv: gr-qc/0403121 | DOI | MR | Zbl

[17] Nimtz G., Heitmann W., “Superluminal photonic tunneling and quantum electronics”, Progr. Quantum Electron., 21 (1997), 81–108 | DOI

[18] Olkhovsky V. S., Recami E., Jakiel J., “Unified time analysis of photon and particle tunnelling”, Phys. Rep., 398 (2004), 133–178 | DOI

[19] Peacock K. A., Would superluminal influences violate the principle of relativity?, arXiv: 1301.0307

[20] Ranfagni A., Fabeni P., Pazzi G. P., Mugnai D., “Anomalous pulse delay in microwave propagation: a plausible connection to the tunneling time”, Phys. Rev. E, 48 (1993), 1453–1460 | DOI

[21] Recami E., “Classical tachyons and possible applications”, Riv. Nuovo Cimento, 9 (1986), 1–178 | DOI | MR

[22] Recami E., “Tachyon kinematics and causality: a systematic thorough analysis of the tachyon causal paradoxes”, Found. Phys., 17 (1987), 239–296 | DOI | MR

[23] Recami E., Superluminal tunnelling through successive barriers: does {QM} predict infinite group-velocities?, J. Modern Opt., 51 (2004), 913–923 | DOI | MR | Zbl

[24] Recami E., A homage to E. C. G. Sudarshan: superluminal objects and waves (an updated overview of the relevant experiments), arXiv: 0804.1502

[25] Recami E., “The Tolman–Regge antitelephone paradox: its solution by tachyon mechanics”, Electron. J. Theor. Phys., 6 (2009), 8 pp.

[26] Recami E., Zamboni-Rached M., Dartora C. A., “Localized X-shaped field generated by a superluminal electric charge”, Phys. Rev. E, 69 (2004), 027602, 4 pp. | DOI

[27] Rindler W., Relativity. Special, general, and cosmological, 2nd ed., Oxford University Press, New York, 2006 | MR

[28] Stannett M., Németi I., “Using Isabelle/HOL to verify first-order relativity theory”, J. Autom. Reasoning (to appear) , arXiv: 1211.6468 | DOI

[29] Steinberg A. M., Kwiat P. G., Chiao R. Y., “Measurement of the single-photon tunneling time”, Phys. Rev. Lett., 71 (1993), 708–711 | DOI

[30] Stückelberg E. C. G., “Un nouveau modèle de l'électron ponctuel en théorie classique”, Helv. Phys. Acta, 14 (1941), 51–80

[31] Sudarshan E. C. G., “The theory of particles traveling faster than light, I”, Symposia on Theoretical Physics and Mathematics (Madras, India), ed. A. Ramakrishnan, Plenum Press, New York, 1970, 129–151

[32] Székely G., “On why-questions in physics”, The Vienna Circle in Hungary, eds. A. Máté, M. Rédei, F. Stadler, Springer-Verlag, Wien, 2011, 181–189, arXiv: 1101.4281

[33] Tolman R. C., The theory of the relativity of motion, University of California, Berkeley, 1917 | Zbl

[34] Zamboni-Rached M., Recami E., Besieris I. M., “Cherenkov radiation versus X-shaped localized waves”, J. Opt. Soc. Amer. A, 27 (2010), 928–934 | DOI

[35] Zamboni-Rached M., Recami E., Besieris I. M., “Cherenkov radiation versus X-shaped localized waves: reply”, J. Opt. Soc. Amer. A, 29 (2012), 2536–2541 | DOI