@article{SIGMA_2014_10_a38,
author = {Oleg V. Ogievetsky and Lo{\"\i}c Poulain d'Andecy},
title = {Fusion {Procedure} for {Cyclotomic} {Hecke} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a38/}
}
Oleg V. Ogievetsky; Loïc Poulain d'Andecy. Fusion Procedure for Cyclotomic Hecke Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a38/
[1] Ariki S., “On the semi-simplicity of the {H}ecke algebra of $(\mathbb{Z}/r\mathbb{Z})\wr {\mathfrak S}_n$”, J. Algebra, 169 (1994), 216–225 | DOI | MR | Zbl
[2] Ariki S., Koike K., “A {H}ecke algebra of $(\mathbb{Z}/r\mathbb{Z})\wr {\mathfrak S}_n$ and construction of its irreducible representations”, Adv. Math., 106 (1994), 216–243 | DOI | MR | Zbl
[3] Broué M., Malle G., “Zyklotomische {H}eckealgebren. Représentations unipotentes génériques et blocs des groupes réductifs finis”, Astérisque, 212, 1993, 119–189 | MR | Zbl
[4] Cherednik I. V., “A new interpretation of {G}el'fand–{T}zetlin bases”, Duke Math. J., 54 (1987), 563–577 | DOI | MR | Zbl
[5] Chlouveraki M., Jacon N., “Schur elements for the {A}riki–{K}oike algebra and applications”, J. Algebraic Combin., 35 (2012), 291–311, arXiv: 1105.5910 | DOI | MR | Zbl
[6] Geck M., Iancu L., Malle G., “Weights of {M}arkov traces and generic degrees”, Indag. Math. (N.S.), 11 (2000), 379–397 | DOI | MR | Zbl
[7] Isaev A. P., Molev A. I., Ogievetsky O. V., Idempotents for Birman–Murakami–Wenzl algebras and reflection equation, arXiv: 1111.2502
[8] Isaev A. P., Molev A. I., Os'kin A. F., “On the idempotents of {H}ecke algebras”, Lett. Math. Phys., 85 (2008), 79–90, arXiv: 0804.4214 | DOI | MR | Zbl
[9] Isaev A. P., Ogievetsky O. V., “On {B}axterized solutions of reflection equation and integrable chain models”, Nuclear Phys. B, 760 (2007), 167–183, arXiv: math-ph/0510078 | DOI | MR | Zbl
[10] Kulish P. P., “Yang–{B}axter equation and reflection equations in integrable models”, Low-Dimensional Models in Statistical Physics and Quantum Field Theory ({S}chladming, 1995), Lecture Notes in Phys., 469, Springer, Berlin, 1996, 125–144 | DOI | MR | Zbl
[11] Mathas A., “Matrix units and generic degrees for the {A}riki–{K}oike algebras”, J. Algebra, 281 (2004), 695–730, arXiv: math.RT/0108164 | DOI | MR | Zbl
[12] Molev A. I., “On the fusion procedure for the symmetric group”, Rep. Math. Phys., 61 (2008), 181–188, arXiv: math.RT/0612207 | DOI | MR | Zbl
[13] Ogievetsky O. V., Poulain d'Andecy L., “On representations of cyclotomic {H}ecke algebras”, Modern Phys. Lett. A, 26 (2011), 795–803, arXiv: 1012.5844 | DOI | MR | Zbl
[14] Ogievetsky O. V., Poulain d'Andecy L., Fusion formula for Coxeter groups of type B and complex reflection groups $G(m,1,n)$, arXiv: 1111.6293
[15] Ogievetsky O. V., Poulain d'Andecy L., Induced representations and traces for chains of affine and cyclotomic Hecke algebras, arXiv: 1312.6980