@article{SIGMA_2014_10_a37,
author = {Vincent X. Genest and Luc Vinet and Alexei Zhedanov},
title = {A {{\textquotedblleft}Continuous{\textquotedblright}} {Limit} of the {Complementary} {Bannai{\textendash}Ito} {Polynomials:} {Chihara} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a37/}
}
TY - JOUR AU - Vincent X. Genest AU - Luc Vinet AU - Alexei Zhedanov TI - A “Continuous” Limit of the Complementary Bannai–Ito Polynomials: Chihara Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a37/ LA - en ID - SIGMA_2014_10_a37 ER -
%0 Journal Article %A Vincent X. Genest %A Luc Vinet %A Alexei Zhedanov %T A “Continuous” Limit of the Complementary Bannai–Ito Polynomials: Chihara Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a37/ %G en %F SIGMA_2014_10_a37
Vincent X. Genest; Luc Vinet; Alexei Zhedanov. A “Continuous” Limit of the Complementary Bannai–Ito Polynomials: Chihara Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a37/
[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize {J}acobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985, iv+55 pp. | DOI | MR
[2] Bannai E., Ito T., Algebraic combinatorics, v. I, Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR
[3] Belmehdi S., “Generalized {G}egenbauer orthogonal polynomials”, J. Comput. Appl. Math., 133 (2001), 195–205 | DOI | MR | Zbl
[4] Ben Cheikh Y., Gaied M., “Characterization of the {D}unkl-classical symmetric orthogonal polynomials”, Appl. Math. Comput., 187 (2007), 105–114 | DOI | MR | Zbl
[5] Chihara T. S., “On kernel polynomials and related systems”, Boll. Un. Mat. Ital., 19 (1964), 451–459 | MR | Zbl
[6] Chihara T. S., An introduction to orthogonal polynomials, Dover Books on Mathematics, Dover Publications, New York, 2011
[7] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[8] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[9] Genest V. X., Ismail M. E. H., Vinet L., Zhedanov A., “The {D}unkl oscillator in the plane. I: {S}uperintegrability, separated wavefunctions and overlap coefficients”, J. Phys. A: Math. Theor., 46 (2013), 145201, 21 pp., arXiv: 1212.4459 | DOI | MR | Zbl
[10] Genest V. X., Ismail M. E.H., Vinet L., Zhedanov A., “The Dunkl oscillator in the plane. II: Representations of the symmetry algebra”, Comm. Math. Phys. (to appear) , arXiv: 1302.6142 | DOI
[11] Genest V. X., Vinet L., Zhedanov A., “Bispectrality of the complementary {B}annai–{I}to polynomials”, SIGMA, 9 (2013), 018, 20 pp., arXiv: 1211.2461 | DOI | MR | Zbl
[12] Genest V. X., Vinet L., Zhedanov A., “The singular and the {$2:1$} anisotropic {D}unkl oscillators in the plane”, J. Phys. A: Math. Theor., 46 (2013), 325201, 17 pp., arXiv: 1305.2126 | DOI | MR | Zbl
[13] Genest V. X., Vinet L., Zhedanov A., “The {B}annai–{I}to polynomials as {R}acah coefficients of the {$sl_{-1}(2)$} algebra”, Proc. Amer. Math. Soc., 142 (2014), 1545–1560, arXiv: 1205.4215 | DOI | MR | Zbl
[14] Geronimus J., “The orthogonality of some systems of polynomials”, Duke Math. J., 14 (1947), 503–510 | DOI | MR | Zbl
[15] Granovskii Y. I., Lutzenko I. M., Zhedanov A. S., “Mutual integrability, quadratic algebras, and dynamical symmetry”, Ann. Physics, 217 (1992), 1–20 | DOI | MR
[16] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[17] Koornwinder T. H., “On the limit from {$q$}-{R}acah polynomials to big {$q$}-{J}acobi polynomials”, SIGMA, 7 (2011), 040, 8 pp., arXiv: 1011.5585 | DOI | MR | Zbl
[18] Leonard D. A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR | Zbl
[19] Marcellán F., Petronilho J., “Eigenproblems for tridiagonal {$2$}-{T}oeplitz matrices and quadratic polynomial mappings”, Linear Algebra Appl., 260 (1997), 169–208 | DOI | MR | Zbl
[20] Rosenblum M., “Generalized {H}ermite polynomials and the {B}ose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics ({B}eer {S}heva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 | MR | Zbl
[21] Tsujimoto S., Vinet L., Zhedanov A., “Dunkl shift operators and {B}annai–{I}to polynomials”, Adv. Math., 229 (2012), 2123–2158, arXiv: 1106.3512 | DOI | MR | Zbl
[22] Tsujimoto S., Vinet L., Zhedanov A., “Dual {$-1$} {H}ahn polynomials: “classical” polynomials beyond the {L}eonard duality”, Proc. Amer. Math. Soc., 141 (2013), 959–970, arXiv: 1108.0132 | DOI | MR | Zbl
[23] Vinet L., Zhedanov A., “A {B}ochner theorem for {D}unkl polynomials”, SIGMA, 7 (2011), 020, 9 pp., arXiv: 1011.1457 | DOI | MR | Zbl
[24] Vinet L., Zhedanov A., “A ‘missing’ family of classical orthogonal polynomials”, J. Phys. A: Math. Theor., 44 (2011), 085201, 16 pp., arXiv: 1011.1669 | DOI | MR | Zbl
[25] Vinet L., Zhedanov A., “A limit {$q=-1$} for the big {$q$}-{J}acobi polynomials”, Trans. Amer. Math. Soc., 364 (2012), 5491–5507, arXiv: 1011.1429 | DOI | MR | Zbl