Twistor Theory of the Airy Equation
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We demonstrate how the complex integral formula for the Airy functions arises from Penrose's twistor contour integral formula. We then use the Lax formulation of the isomonodromy problem with one irregular singularity of order four to show that the Airy equation arises from the anti-self-duality equations for conformal structures of neutral signature invariant under the isometric action of the Bianchi II group. This conformal structure admits a null-Kähler metric in its conformal class which we construct explicitly.
Keywords: twistor theory; Airy equation; self-duality.
@article{SIGMA_2014_10_a36,
     author = {Michael Cole and Maciej Dunajski},
     title = {Twistor {Theory} of the {Airy} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/}
}
TY  - JOUR
AU  - Michael Cole
AU  - Maciej Dunajski
TI  - Twistor Theory of the Airy Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/
LA  - en
ID  - SIGMA_2014_10_a36
ER  - 
%0 Journal Article
%A Michael Cole
%A Maciej Dunajski
%T Twistor Theory of the Airy Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/
%G en
%F SIGMA_2014_10_a36
Michael Cole; Maciej Dunajski. Twistor Theory of the Airy Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/

[1] Dunajski M., “Anti-self-dual four-manifolds with a parallel real spinor”, Proc. Roy. Soc. London Ser. A, 458 (2002), 1205–1222, arXiv: math.DG/0102225 | DOI | MR | Zbl

[2] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl

[3] Eastwood M. G., Penrose R., Wells R. O., “Cohomology and massless fields”, Comm. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl

[4] Jeffreys H., Jeffreys B. S., Methods of mathematical physics, Cambridge University Press, New York, 1946 | MR | Zbl

[5] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl

[6] John F., “The ultrahyperbolic differential equation with four independent variables”, Duke Math. J., 4 (1938), 300–322 | DOI | MR

[7] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[8] Maszczyk R., Mason L. J., Woodhouse N. M. J., “Self-dual {B}ianchi metrics and the {P}ainlevé transcendents”, Classical Quantum Gravity, 11 (1994), 65–71 | DOI | MR | Zbl

[9] Penrose R., “Solutions of the zero-rest-mass equations”, J. Math. Phys., 40 (1969), 38–39 | DOI | MR

[10] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl

[11] Shah M. R., Woodhouse N. M. J., “Painlevé {VI}, hypergeometric hierarchies and {W}ard ansätze”, J. Phys. A: Math. Gen., 39 (2006), 12265–12269 | DOI | MR | Zbl

[12] Takasaki K., “Spectral curves and {W}hitham equations in isomonodromic problems of {S}chlesinger type”, Asian J. Math., 2 (1998), 1049–1078, arXiv: solv-int/9704004 | MR | Zbl

[13] Ward R. S., “On self-dual gauge fields”, Phys. Lett. A, 61 (1977), 81–82 | DOI | MR | Zbl

[14] Woodhouse N. M. J., “Contour integrals for the ultrahyperbolic wave equation”, Proc. Roy. Soc. London Ser. A, 438 (1992), 197–206 | DOI | MR | Zbl