@article{SIGMA_2014_10_a36,
author = {Michael Cole and Maciej Dunajski},
title = {Twistor {Theory} of the {Airy} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/}
}
Michael Cole; Maciej Dunajski. Twistor Theory of the Airy Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a36/
[1] Dunajski M., “Anti-self-dual four-manifolds with a parallel real spinor”, Proc. Roy. Soc. London Ser. A, 458 (2002), 1205–1222, arXiv: math.DG/0102225 | DOI | MR | Zbl
[2] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl
[3] Eastwood M. G., Penrose R., Wells R. O., “Cohomology and massless fields”, Comm. Math. Phys., 78 (1981), 305–351 | DOI | MR | Zbl
[4] Jeffreys H., Jeffreys B. S., Methods of mathematical physics, Cambridge University Press, New York, 1946 | MR | Zbl
[5] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[6] John F., “The ultrahyperbolic differential equation with four independent variables”, Duke Math. J., 4 (1938), 300–322 | DOI | MR
[7] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR
[8] Maszczyk R., Mason L. J., Woodhouse N. M. J., “Self-dual {B}ianchi metrics and the {P}ainlevé transcendents”, Classical Quantum Gravity, 11 (1994), 65–71 | DOI | MR | Zbl
[9] Penrose R., “Solutions of the zero-rest-mass equations”, J. Math. Phys., 40 (1969), 38–39 | DOI | MR
[10] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl
[11] Shah M. R., Woodhouse N. M. J., “Painlevé {VI}, hypergeometric hierarchies and {W}ard ansätze”, J. Phys. A: Math. Gen., 39 (2006), 12265–12269 | DOI | MR | Zbl
[12] Takasaki K., “Spectral curves and {W}hitham equations in isomonodromic problems of {S}chlesinger type”, Asian J. Math., 2 (1998), 1049–1078, arXiv: solv-int/9704004 | MR | Zbl
[13] Ward R. S., “On self-dual gauge fields”, Phys. Lett. A, 61 (1977), 81–82 | DOI | MR | Zbl
[14] Woodhouse N. M. J., “Contour integrals for the ultrahyperbolic wave equation”, Proc. Roy. Soc. London Ser. A, 438 (1992), 197–206 | DOI | MR | Zbl