A Note on Gluing Dirac Type Operators on a Mirror Quantum Two-Sphere
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The goal of this paper is to introduce a class of operators, which we call quantum Dirac type operators on a noncommutative sphere, by a gluing construction from copies of noncommutative disks, subject to an appropriate local boundary condition. We show that the resulting operators have compact resolvents, and so they are elliptic operators.
Keywords: Dirac type operator; quantum space, $C^*$-algebra.
@article{SIGMA_2014_10_a35,
     author = {Slawomir Klimek and Matt McBride},
     title = {A {Note} on {Gluing} {Dirac} {Type} {Operators} on {a~Mirror} {Quantum} {Two-Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a35/}
}
TY  - JOUR
AU  - Slawomir Klimek
AU  - Matt McBride
TI  - A Note on Gluing Dirac Type Operators on a Mirror Quantum Two-Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a35/
LA  - en
ID  - SIGMA_2014_10_a35
ER  - 
%0 Journal Article
%A Slawomir Klimek
%A Matt McBride
%T A Note on Gluing Dirac Type Operators on a Mirror Quantum Two-Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a35/
%G en
%F SIGMA_2014_10_a35
Slawomir Klimek; Matt McBride. A Note on Gluing Dirac Type Operators on a Mirror Quantum Two-Sphere. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a35/

[1] Ahlfors L. V., Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, 3rd ed., McGraw-Hill Book Co., New York, 1978 | MR

[2] Brain S., Landi G., “The 3{D} spin geometry of the quantum two-sphere”, Rev. Math. Phys., 22 (2010), 963–993, arXiv: 1003.2150 | DOI | MR | Zbl

[3] Carey A. L., Klimek S., Wojciechowski K. P., “A {D}irac type operator on the non-commutative disk”, Lett. Math. Phys., 93 (2010), 107–125 | DOI | MR | Zbl

[4] D{a̧}browski L., Landi G., Paschke M., Sitarz A., “The spectral geometry of the equatorial {P}odleś sphere”, C. R. Math. Acad. Sci. Paris, 340 (2005), 819–822, arXiv: math.QA/0408034 | DOI | MR

[5] D{a̧}browski L., Sitarz A., “Dirac operator on the standard {P}odleś quantum sphere”, Noncommutative Geometry and Quantum Groups ({W}arsaw, 2001), Banach Center Publ., 61, Polish Acad. Sci., Warsaw, 2003, 49–58, arXiv: math.QA/0209048 | DOI

[6] D'Andrea F., D{a̧}browski L., Landi G., Wagner E., “Dirac operators on all {P}odleś quantum spheres”, J. Noncommut. Geom., 1 (2007), 213–239, arXiv: math.QA/0606480 | DOI | MR

[7] Hajac P. M., Matthes R., Szymański W., “Noncommutative index theory for mirror quantum spheres”, C. R. Math. Acad. Sci. Paris, 343 (2006), 731–736, arXiv: math.KT/0511309 | DOI | MR | Zbl

[8] Klimek S., Lesniewski A., “Quantum {R}iemann surfaces. {I}: {T}he unit disc”, Comm. Math. Phys., 146 (1992), 103–122 | DOI | MR | Zbl

[9] Klimek S., Lesniewski A., “A two-parameter quantum deformation of the unit disc”, J. Funct. Anal., 115 (1993), 1–23 | DOI | MR | Zbl

[10] Klimek S., McBride M., “D-bar operators on quantum domains”, Math. Phys. Anal. Geom., 13 (2010), 357–390, arXiv: 1001.2216 | DOI | MR | Zbl

[11] Klimek S., McBride M., “A note on {D}irac operators on the quantum punctured disk”, SIGMA, 6 (2010), 056, 12 pp., arXiv: 1003.5618 | DOI | MR | Zbl

[12] Klimek S., McBride M., “Global boundary conditions for a {D}irac operator on the solid torus”, J. Math. Phys., 52 (2011), 063518, 14 pp., arXiv: 1103.4569 | DOI | MR

[13] Klimek S., McBride M., Dirac type operators on the quantum solid torus with global boundary conditions, {i}n preparation

[14] Wagner E., “Fibre product approach to index pairings for the generic {H}opf fibration of {${\rm SU}_q(2)$}”, J. $K$-Theory, 7 (2011), 1–17, arXiv: 0902.3777 | DOI | MR | Zbl