@article{SIGMA_2014_10_a33,
author = {D. M. J. Calderbank},
title = {Integrable {Background} {Geometries}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/}
}
D. M. J. Calderbank. Integrable Background Geometries. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/
[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl
[2] Ashtekar A., Jacobson T., Smolin L., “A new characterization of half-flat solutions to {E}instein's equation”, Comm. Math. Phys., 115 (1988), 631–648 | DOI | MR | Zbl
[3] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl
[4] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional {R}iemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl
[5] Atiyah M. F., Ward R. S., “Instantons and algebraic geometry”, Comm. Math. Phys., 55 (1977), 117–124 | DOI | MR | Zbl
[6] Boyer C. P., Finley J. D., “Killing vectors in self-dual, {E}uclidean {E}instein spaces”, J. Math. Phys., 23 (1982), 1126–1130 | DOI | MR | Zbl
[7] Burtsev S. P., Zakharov V. E., Mikhailov A. V., “Inverse scattering method with variable spectral parameter”, Theoret. and Math. Phys., 70 (1987), 227–240 | DOI | MR | Zbl
[8] Calderbank D. M. J., Selfdual {E}instein metrics and conformal submersions, arXiv: math.DG/0001041
[9] Calderbank D. M. J., Mason L. J., Spinor-vortex geometry and microtwistor theory, unpublished, 2002
[10] Calderbank D. M. J., Pedersen H., “Selfdual spaces with complex structures, {E}instein-{W}eyl geometry and geodesics”, Ann. Inst. Fourier (Grenoble), 50 (2000), 921–963, arXiv: math.DG/9911117 | DOI | MR | Zbl
[11] Calderbank D. M. J., Tod P., “Einstein metrics, hypercomplex structures and the {T}oda field equation”, Differential Geom. Appl., 14 (2001), 199–208, arXiv: math.DG/9911121 | DOI | MR | Zbl
[12] Cartan É., “Sur une classe d'espaces de {W}eyl”, Ann. Sci. École Norm. Sup. (3), 60 (1943), 1–16 | MR | Zbl
[13] Chakravarty S., Mason L., Newman E. T., “Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group”, J. Math. Phys., 32 (1991), 1458–1464 | DOI | MR | Zbl
[14] Dancer A. S., “Scalar-flat {K}ähler metrics with {${\rm SU}(2)$} symmetry”, J. Reine Angew. Math., 479 (1996), 99–120 | DOI | MR | Zbl
[15] Dancer A. S., Strachan I. A. B., “Cohomogeneity-one {K}ähler metrics”, Twistor Theory ({P}lymouth), Lecture Notes in Pure and Appl. Math., 169, Dekker, New York, 1995, 9–27 | MR | Zbl
[16] Dubrovin B., “Geometry of {$2$}{D} topological field theories”, Integrable Systems and Quantum Groups ({M}ontecatini {T}erme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[17] Dunajski M., “The twisted photon associated to hyper-{H}ermitian four-manifolds”, J. Geom. Phys., 30 (1999), 266–281, arXiv: math.DG/9808137 | DOI | MR | Zbl
[18] Dunajski M., Mason L. J., Tod P., “Einstein–{W}eyl geometry, the d{KP} equation and twistor theory”, J. Geom. Phys., 37 (2001), 63–93, arXiv: math.DG/0004031 | DOI | MR | Zbl
[19] Dunajski M., Mason L. J., Woodhouse N. M. J., “From {$2$}{D} integrable systems to self-dual gravity”, J. Phys. A: Math. Gen., 31 (1998), 6019–6028, arXiv: solv-int/9809006 | DOI | MR | Zbl
[20] Dunajski M., Tod P., “Einstein-{W}eyl spaces and dispersionless {K}adomtsev–{P}etviashvili equation from {P}ainlevé {I} and {II}”, Phys. Lett. A, 303 (2002), 253–264, arXiv: nlin.SI/0204043 | DOI | MR | Zbl
[21] Gauduchon P., “Structures de {W}eyl–{E}instein, espaces de twisteurs et variétés de type {$S^1\times S^3$}”, J. Reine Angew. Math., 469 (1995), 1–50 | DOI | MR | Zbl
[22] Gauduchon P., Tod K. P., “Hyper-{H}ermitian metrics with symmetry”, J. Geom. Phys., 25 (1998), 291–304 | DOI | MR | Zbl
[23] Gegenberg J. D., Das A., “Stationary {R}iemannian space-times with self-dual curvature”, Gen. Relativity Gravitation, 16 (1984), 817–829 | DOI | MR | Zbl
[24] Gibbons G. W., Hawking S. W., “Gravitational multi-instantons”, Phys. Lett. B, 78 (1978), 430–432 | DOI
[25] Glazebrook J. F., Kamber F. W., Pedersen H., Swann A., “Foliation reduction and self-duality”, Geometric Study of Foliations ({T}okyo, 1993), eds. T. Mizutani, K. Masuda, S. Matsumoto, T. Inaba, T. Tsuboi, Y. Mitsumatsu, World Sci. Publ., River Edge, NJ, 1994, 219–249 | MR
[26] Grant J. D. E., Strachan I. A. B., “Hypercomplex integrable systems”, Nonlinearity, 12 (1999), 1247–1261, arXiv: solv-int/9808019 | DOI | MR | Zbl
[27] Gross M., Wilson P. M. H., “Large complex structure limits of {$K3$} surfaces”, J. Differential Geom., 55 (2000), 475–546, arXiv: math.DG/0008018 | MR | Zbl
[28] Hashimoto Y., Yasui Y., Miyagi S., Ootsuka T., “Applications of the {A}shtekar gravity to four-dimensional hyper-{K}ähler geometry and {Y}ang–{M}ills instantons”, J. Math. Phys., 38 (1997), 5833–5839, arXiv: hep-th/9610069 | DOI | MR | Zbl
[29] Hitchin N. J., “Complex manifolds and {E}instein's equations”, Twistor Geometry and Nonlinear Systems ({P}rimorsko, 1980), Lecture Notes in Math., 970, eds. H. D. Doebner, T. D. Palev, Springer, Berlin, 1982, 73–99 | DOI | MR
[30] Hitchin N. J., “The self-duality equations on a {R}iemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[31] Hitchin N. J., “Twistor spaces, {E}instein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | MR | Zbl
[32] Hitchin N. J., “Geometrical aspects of {S}chlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl
[33] Hitchin N. J., “Hypercomplex manifolds and the space of framings”, The Geometric Universe ({O}xford, 1996), eds. S. A. Huggett, L. J. Mason, K. P. Tod, S. T. Tsou, N. M. J. Woodhouse, Oxford University Press, Oxford, 1998, 9–30 | MR | Zbl
[34] Husain V., “Self-dual gravity as a two-dimensional theory and conservation laws”, Classical Quantum Gravity, 11 (1994), 927–937, arXiv: gr-qc/9310003 | MR
[35] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. {I}: {G}eneral theory and {$\tau $}-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[36] Jones P. E., Tod K. P., “Minitwistor spaces and {E}instein–{W}eyl spaces”, Classical Quantum Gravity, 2 (1985), 565–577 | DOI | MR | Zbl
[37] Joyce D. D., “Explicit construction of self-dual {$4$}-manifolds”, Duke Math. J., 77 (1995), 519–552 | DOI | MR | Zbl
[38] LeBrun C., Spaces of complex geodesics and related structures, Ph.D. Thesis, University of Oxford, 1980
[39] LeBrun C., “Explicit self-dual metrics on {${\mathbb {CP}}_2\#\cdots\#{\mathbb {CP}}_2$}”, J. Differential Geom., 34 (1991), 223–253 | MR | Zbl
[40] Mason L. J., Newman E. T., “A connection between the {E}instein and {Y}ang–{M}ills equations”, Comm. Math. Phys., 121 (1989), 659–668 | DOI | MR | Zbl
[41] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR
[42] Maszczyk R., “The classification of self-dual {B}ianchi metrics”, Classical Quantum Gravity, 13 (1996), 513–527 | DOI | MR | Zbl
[43] Maszczyk R., Mason L. J., Woodhouse N. M. J., “Self-dual {B}ianchi metrics and the {P}ainlevé transcendents”, Classical Quantum Gravity, 11 (1994), 65–71 | DOI | MR | Zbl
[44] Nahm W., “The construction of all self-dual multimonopoles by the {ADHM} method”, Monopoles in Quantum Field Theory ({T}rieste, 1981), World Sci. Publishing, Singapore, 1982, 87–94 | MR
[45] Obata M., “Affine connections on manifolds with almost complex, quaternion or {H}ermitian structure”, Jpn. J. Math., 26 (1956), 43–77 | MR
[46] Park Q. H., “Self-dual gravity as a large-{$N$} limit of the {$2$}{D} nonlinear sigma model”, Phys. Lett. B, 238 (1990), 287–290 | DOI | MR
[47] Pedersen H., Poon Y. S., “Kähler surfaces with zero scalar curvature”, Classical Quantum Gravity, 7 (1990), 1707–1719 | DOI | MR | Zbl
[48] Pedersen H., Tod K. P., “Three-dimensional {E}instein–{W}eyl geometry”, Adv. Math., 97 (1993), 74–109 | DOI | MR | Zbl
[49] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl
[50] Plebański J. F., “Some solutions of complex {E}instein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR
[51] Tafel J., “Two-dimensional reductions of the self-dual {Y}ang–{M}ills equations in self-dual spaces”, J. Math. Phys., 34 (1993), 1892–1907 | DOI | MR | Zbl
[52] Tafel J., Wójcik D., “Null {K}illing vectors and reductions of the self-duality equations”, Nonlinearity, 11 (1998), 835–844 | DOI | MR | Zbl
[53] Tod K. P., “Self-dual {E}instein metrics from the {P}ainlevé {VI} equation”, Phys. Lett. A, 190 (1994), 221–224 | DOI | MR | Zbl
[54] Tod K. P., “Cohomogeneity-one metrics with self-dual {W}eyl tensor”, Twistor Theory ({P}lymouth), Lecture Notes in Pure and Appl. Math., 169, ed. S. A. Huggett, Dekker, New York, 1995, 171–184 | MR | Zbl
[55] Tod K. P., “Scalar-flat {K}ähler and hyper-{K}ähler metrics from {P}ainlevé-{III}”, Classical Quantum Gravity, 12 (1995), 1535–1547 | DOI | MR | Zbl
[56] Tod K. P., “‘{S}pecial’ {E}instein–{W}eyl spaces”, Twistor Newsletter, 42 (1997), 13–15
[57] Todd J. A., Projective and analytical geometry, Pitman Publishing Corporation, New York, 1946 | MR | Zbl
[58] Ueno T., “Integrable field theories derived from {$4$}-{D} self-dual gravity”, Modern Phys. Lett. A, 11 (1996), 545–552, arXiv: hep-th/9508012 | DOI | MR | Zbl
[59] Ward R. S., “Integrable and solvable systems, and relations among them”, Philos. Trans. Roy. Soc. London Ser. A, 315 (1985), 451–457 | DOI | MR | Zbl
[60] Ward R. S., “{E}instein–{W}eyl spaces and {$\mathrm{SU}(\infty)$} {T}oda fields”, Classical Quantum Gravity, 7 (1990), L95–L98 | DOI | Zbl
[61] Ward R. S., “Linearization of the {${\rm SU}(\infty)$} {N}ahm equations”, Phys. Lett. B, 234 (1990), 81–84 | DOI | MR
[62] Ward R. S., “The {${\rm SU}(\infty)$} chiral model and self-dual vacuum spaces”, Classical Quantum Gravity, 7 (1990), L217–L222 | DOI | MR | Zbl
[63] Weyl H., Space, time, matter, Dover, New York, 1952 | Zbl
[64] Yoshida M., Hypergeometric functions, my love (modular interpretations of configuration spaces), Aspects of Mathematics, E32, Friedr. Vieweg Sohn, Braunschweig, 1997 | DOI | MR
[65] Calderbank D. M. J., “Selfdual $4$-manifolds, projective structures, and the Dunajski–West construction”, SIGMA, 10 (2014), 035, 18 pp., arXiv: math.DG/0606754 | DOI | Zbl
[66] Donaldson S., Fine J., “Toric anti-self-dual 4-manifolds via complex geometry”, Math. Ann., 336 (2006), 281–309, arXiv: math.DG/0602423 | DOI | MR | Zbl
[67] Dunajski M., “Harmonic functions, central quadrics and twistor theory”, Classical Quantum Gravity, 20 (2003), 3427–3440, arXiv: math.DG/0303181 | DOI | MR | Zbl
[68] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl
[69] Dunajski M., Grant J. D. E., Strachan I. A. B., “Multidimensional integrable systems and deformations of {L}ie algebra homomorphisms”, J. Math. Phys., 48 (2007), 093502, 11 pp., arXiv: nlin.SI/0702040 | DOI | MR | Zbl
[70] Dunajski M., Krynski W., “{E}instein–{W}eyl geometry, dispersionless {H}irota equation and {V}eronese webs”, Math. Proc. Cambridge Philos. Soc. (to appear) , arXiv: 1301.0621
[71] Dunajski M., Sparling G., “A dispersionless integrable system associated to {${\rm Diff}(S^1)$} gauge theory”, Phys. Lett. A, 343 (2005), 129–132, arXiv: nlin.SI/0503030 | DOI | MR | Zbl
[72] Dunajski M., West S., “Anti-self-dual conformal structures with null {K}illing vectors from projective structures”, Comm. Math. Phys., 272 (2007), 85–118, arXiv: math.DG/0601419 | DOI | MR | Zbl
[73] Dunajski M., West S., “Anti-self-dual conformal structures in neutral signature”, Recent Developments in Pseudo-{R}iemannian Geometry, ESI Lect. Math. Phys., eds. D. V. Alekseevsky, H. Baum, Eur. Math. Soc., Zürich, 2008, 113–148, arXiv: math.DG/0610280 | DOI | MR | Zbl
[74] Ferapontov E. V., Huard B., Zhang A., “On the central quadric ansatz: integrable models and {P}ainlevé reductions”, J. Phys. A: Math. Theor., 45 (2012), 195204, 11 pp., arXiv: 1201.5061 | DOI | MR | Zbl
[75] Ferapontov E. V., Kruglikov B., Dispersionless integrable systems in 3D and Einstein–Weyl geometry, arXiv: 1208.2728
[76] Fine J., “Toric anti-self-dual {E}instein metrics via complex geometry”, Math. Ann., 340 (2008), 143–157, arXiv: math.DG/0609487 | DOI | MR
[77] LeBrun C., Mason L. J., “Zoll manifolds and complex surfaces”, J. Differential Geom., 61 (2002), 453–535, arXiv: math.DG/0211021 | MR | Zbl
[78] LeBrun C., Mason L. J., “Nonlinear gravitons, null geodesics, and holomorphic disks”, Duke Math. J., 136 (2007), 205–273, arXiv: math.DG/0504582 | DOI | MR | Zbl
[79] LeBrun C., Mason L. J., “The {E}instein–{W}eyl equations, scattering maps, and holomorphic disks”, Math. Res. Lett., 16 (2009), 291–301, arXiv: 0806.3761 | DOI | MR | Zbl
[80] LeBrun C., Mason L. J., “Zoll metrics, branched covers, and holomorphic disks”, Comm. Anal. Geom., 18 (2010), 475–502, arXiv: 1002.2993 | DOI | MR | Zbl
[81] Nakata F., “Self-dual {Z}ollfrei conformal structures with {$\alpha$}-surface foliation”, J. Geom. Phys., 57 (2007), 2077–2097, arXiv: math.DG/0701116 | DOI | MR | Zbl
[82] Nakata F., “Singular self-dual {Z}ollfrei metrics and twistor correspondence”, J. Geom. Phys., 57 (2007), 1477–1498, arXiv: math.DG/0607276 | DOI | MR | Zbl
[83] Nakata F., “A construction of {E}instein–{W}eyl spaces via {L}e{B}run–{M}ason type twistor correspondence”, Comm. Math. Phys., 289 (2009), 663–699, arXiv: 0806.2696 | DOI | MR | Zbl