Integrable Background Geometries
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work has its origins in an attempt to describe systematically the integrable geometries and gauge theories in dimensions one to four related to twistor theory. In each such dimension, there is a nondegenerate integrable geometric structure, governed by a nonlinear integrable differential equation, and each solution of this equation determines a background geometry on which, for any Lie group $G$, an integrable gauge theory is defined. In four dimensions, the geometry is selfdual conformal geometry and the gauge theory is selfdual Yang–Mills theory, while the lower-dimensional structures are nondegenerate (i.e., non-null) reductions of this. Any solution of the gauge theory on a $k$-dimensional geometry, such that the gauge group $H$ acts transitively on an $\ell$-manifold, determines a $(k+\ell)$-dimensional geometry ($k+\ell\leqslant4$) fibering over the $k$-dimensional geometry with $H$ as a structure group. In the case of an $\ell$-dimensional group $H$ acting on itself by the regular representation, all $(k+\ell)$-dimensional geometries with symmetry group $H$ are locally obtained in this way. This framework unifies and extends known results about dimensional reductions of selfdual conformal geometry and the selfdual Yang–Mills equation, and provides a rich supply of constructive methods. In one dimension, generalized Nahm equations provide a uniform description of four pole isomonodromic deformation problems, and may be related to the $\mathrm{SU}(\infty)$ Toda and dKP equations via a hodograph transformation. In two dimensions, the $\mathrm{Diff}(S^1)$ Hitchin equation is shown to be equivalent to the hyperCR Einstein–Weyl equation, while the $\mathrm{SDiff}(\Sigma^2)$ Hitchin equation leads to a Euclidean analogue of Plebanski's heavenly equations. In three and four dimensions, the constructions of this paper help to organize the huge range of examples of Einstein–Weyl and selfdual spaces in the literature, as well as providing some new ones. The nondegenerate reductions have a long ancestry. More recently, degenerate or null reductions have attracted increased interest. Two of these reductions and their gauge theories (arguably, the two most significant) are also described.
Keywords: selfduality; gauge theory; twistor theory; integrable systems.
@article{SIGMA_2014_10_a33,
     author = {D. M. J. Calderbank},
     title = {Integrable {Background} {Geometries}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/}
}
TY  - JOUR
AU  - D. M. J. Calderbank
TI  - Integrable Background Geometries
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/
LA  - en
ID  - SIGMA_2014_10_a33
ER  - 
%0 Journal Article
%A D. M. J. Calderbank
%T Integrable Background Geometries
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/
%G en
%F SIGMA_2014_10_a33
D. M. J. Calderbank. Integrable Background Geometries. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a33/

[1] Ablowitz M. J., Clarkson P. A., Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl

[2] Ashtekar A., Jacobson T., Smolin L., “A new characterization of half-flat solutions to {E}instein's equation”, Comm. Math. Phys., 115 (1988), 631–648 | DOI | MR | Zbl

[3] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl

[4] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional {R}iemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | DOI | MR | Zbl

[5] Atiyah M. F., Ward R. S., “Instantons and algebraic geometry”, Comm. Math. Phys., 55 (1977), 117–124 | DOI | MR | Zbl

[6] Boyer C. P., Finley J. D., “Killing vectors in self-dual, {E}uclidean {E}instein spaces”, J. Math. Phys., 23 (1982), 1126–1130 | DOI | MR | Zbl

[7] Burtsev S. P., Zakharov V. E., Mikhailov A. V., “Inverse scattering method with variable spectral parameter”, Theoret. and Math. Phys., 70 (1987), 227–240 | DOI | MR | Zbl

[8] Calderbank D. M. J., Selfdual {E}instein metrics and conformal submersions, arXiv: math.DG/0001041

[9] Calderbank D. M. J., Mason L. J., Spinor-vortex geometry and microtwistor theory, unpublished, 2002

[10] Calderbank D. M. J., Pedersen H., “Selfdual spaces with complex structures, {E}instein-{W}eyl geometry and geodesics”, Ann. Inst. Fourier (Grenoble), 50 (2000), 921–963, arXiv: math.DG/9911117 | DOI | MR | Zbl

[11] Calderbank D. M. J., Tod P., “Einstein metrics, hypercomplex structures and the {T}oda field equation”, Differential Geom. Appl., 14 (2001), 199–208, arXiv: math.DG/9911121 | DOI | MR | Zbl

[12] Cartan É., “Sur une classe d'espaces de {W}eyl”, Ann. Sci. École Norm. Sup. (3), 60 (1943), 1–16 | MR | Zbl

[13] Chakravarty S., Mason L., Newman E. T., “Canonical structures on anti-self-dual four-manifolds and the diffeomorphism group”, J. Math. Phys., 32 (1991), 1458–1464 | DOI | MR | Zbl

[14] Dancer A. S., “Scalar-flat {K}ähler metrics with {${\rm SU}(2)$} symmetry”, J. Reine Angew. Math., 479 (1996), 99–120 | DOI | MR | Zbl

[15] Dancer A. S., Strachan I. A. B., “Cohomogeneity-one {K}ähler metrics”, Twistor Theory ({P}lymouth), Lecture Notes in Pure and Appl. Math., 169, Dekker, New York, 1995, 9–27 | MR | Zbl

[16] Dubrovin B., “Geometry of {$2$}{D} topological field theories”, Integrable Systems and Quantum Groups ({M}ontecatini {T}erme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl

[17] Dunajski M., “The twisted photon associated to hyper-{H}ermitian four-manifolds”, J. Geom. Phys., 30 (1999), 266–281, arXiv: math.DG/9808137 | DOI | MR | Zbl

[18] Dunajski M., Mason L. J., Tod P., “Einstein–{W}eyl geometry, the d{KP} equation and twistor theory”, J. Geom. Phys., 37 (2001), 63–93, arXiv: math.DG/0004031 | DOI | MR | Zbl

[19] Dunajski M., Mason L. J., Woodhouse N. M. J., “From {$2$}{D} integrable systems to self-dual gravity”, J. Phys. A: Math. Gen., 31 (1998), 6019–6028, arXiv: solv-int/9809006 | DOI | MR | Zbl

[20] Dunajski M., Tod P., “Einstein-{W}eyl spaces and dispersionless {K}adomtsev–{P}etviashvili equation from {P}ainlevé {I} and {II}”, Phys. Lett. A, 303 (2002), 253–264, arXiv: nlin.SI/0204043 | DOI | MR | Zbl

[21] Gauduchon P., “Structures de {W}eyl–{E}instein, espaces de twisteurs et variétés de type {$S^1\times S^3$}”, J. Reine Angew. Math., 469 (1995), 1–50 | DOI | MR | Zbl

[22] Gauduchon P., Tod K. P., “Hyper-{H}ermitian metrics with symmetry”, J. Geom. Phys., 25 (1998), 291–304 | DOI | MR | Zbl

[23] Gegenberg J. D., Das A., “Stationary {R}iemannian space-times with self-dual curvature”, Gen. Relativity Gravitation, 16 (1984), 817–829 | DOI | MR | Zbl

[24] Gibbons G. W., Hawking S. W., “Gravitational multi-instantons”, Phys. Lett. B, 78 (1978), 430–432 | DOI

[25] Glazebrook J. F., Kamber F. W., Pedersen H., Swann A., “Foliation reduction and self-duality”, Geometric Study of Foliations ({T}okyo, 1993), eds. T. Mizutani, K. Masuda, S. Matsumoto, T. Inaba, T. Tsuboi, Y. Mitsumatsu, World Sci. Publ., River Edge, NJ, 1994, 219–249 | MR

[26] Grant J. D. E., Strachan I. A. B., “Hypercomplex integrable systems”, Nonlinearity, 12 (1999), 1247–1261, arXiv: solv-int/9808019 | DOI | MR | Zbl

[27] Gross M., Wilson P. M. H., “Large complex structure limits of {$K3$} surfaces”, J. Differential Geom., 55 (2000), 475–546, arXiv: math.DG/0008018 | MR | Zbl

[28] Hashimoto Y., Yasui Y., Miyagi S., Ootsuka T., “Applications of the {A}shtekar gravity to four-dimensional hyper-{K}ähler geometry and {Y}ang–{M}ills instantons”, J. Math. Phys., 38 (1997), 5833–5839, arXiv: hep-th/9610069 | DOI | MR | Zbl

[29] Hitchin N. J., “Complex manifolds and {E}instein's equations”, Twistor Geometry and Nonlinear Systems ({P}rimorsko, 1980), Lecture Notes in Math., 970, eds. H. D. Doebner, T. D. Palev, Springer, Berlin, 1982, 73–99 | DOI | MR

[30] Hitchin N. J., “The self-duality equations on a {R}iemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl

[31] Hitchin N. J., “Twistor spaces, {E}instein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | MR | Zbl

[32] Hitchin N. J., “Geometrical aspects of {S}chlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl

[33] Hitchin N. J., “Hypercomplex manifolds and the space of framings”, The Geometric Universe ({O}xford, 1996), eds. S. A. Huggett, L. J. Mason, K. P. Tod, S. T. Tsou, N. M. J. Woodhouse, Oxford University Press, Oxford, 1998, 9–30 | MR | Zbl

[34] Husain V., “Self-dual gravity as a two-dimensional theory and conservation laws”, Classical Quantum Gravity, 11 (1994), 927–937, arXiv: gr-qc/9310003 | MR

[35] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. {I}: {G}eneral theory and {$\tau $}-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[36] Jones P. E., Tod K. P., “Minitwistor spaces and {E}instein–{W}eyl spaces”, Classical Quantum Gravity, 2 (1985), 565–577 | DOI | MR | Zbl

[37] Joyce D. D., “Explicit construction of self-dual {$4$}-manifolds”, Duke Math. J., 77 (1995), 519–552 | DOI | MR | Zbl

[38] LeBrun C., Spaces of complex geodesics and related structures, Ph.D. Thesis, University of Oxford, 1980

[39] LeBrun C., “Explicit self-dual metrics on {${\mathbb {CP}}_2\#\cdots\#{\mathbb {CP}}_2$}”, J. Differential Geom., 34 (1991), 223–253 | MR | Zbl

[40] Mason L. J., Newman E. T., “A connection between the {E}instein and {Y}ang–{M}ills equations”, Comm. Math. Phys., 121 (1989), 659–668 | DOI | MR | Zbl

[41] Mason L. J., Woodhouse N. M. J., Integrability, self-duality, and twistor theory, London Mathematical Society Monographs. New Series, 15, The Clarendon Press, Oxford University Press, New York, 1996 | MR

[42] Maszczyk R., “The classification of self-dual {B}ianchi metrics”, Classical Quantum Gravity, 13 (1996), 513–527 | DOI | MR | Zbl

[43] Maszczyk R., Mason L. J., Woodhouse N. M. J., “Self-dual {B}ianchi metrics and the {P}ainlevé transcendents”, Classical Quantum Gravity, 11 (1994), 65–71 | DOI | MR | Zbl

[44] Nahm W., “The construction of all self-dual multimonopoles by the {ADHM} method”, Monopoles in Quantum Field Theory ({T}rieste, 1981), World Sci. Publishing, Singapore, 1982, 87–94 | MR

[45] Obata M., “Affine connections on manifolds with almost complex, quaternion or {H}ermitian structure”, Jpn. J. Math., 26 (1956), 43–77 | MR

[46] Park Q. H., “Self-dual gravity as a large-{$N$} limit of the {$2$}{D} nonlinear sigma model”, Phys. Lett. B, 238 (1990), 287–290 | DOI | MR

[47] Pedersen H., Poon Y. S., “Kähler surfaces with zero scalar curvature”, Classical Quantum Gravity, 7 (1990), 1707–1719 | DOI | MR | Zbl

[48] Pedersen H., Tod K. P., “Three-dimensional {E}instein–{W}eyl geometry”, Adv. Math., 97 (1993), 74–109 | DOI | MR | Zbl

[49] Penrose R., “Nonlinear gravitons and curved twistor theory”, Gen. Relativity Gravitation, 7 (1976), 31–52 | DOI | MR | Zbl

[50] Plebański J. F., “Some solutions of complex {E}instein equations”, J. Math. Phys., 16 (1975), 2395–2402 | DOI | MR

[51] Tafel J., “Two-dimensional reductions of the self-dual {Y}ang–{M}ills equations in self-dual spaces”, J. Math. Phys., 34 (1993), 1892–1907 | DOI | MR | Zbl

[52] Tafel J., Wójcik D., “Null {K}illing vectors and reductions of the self-duality equations”, Nonlinearity, 11 (1998), 835–844 | DOI | MR | Zbl

[53] Tod K. P., “Self-dual {E}instein metrics from the {P}ainlevé {VI} equation”, Phys. Lett. A, 190 (1994), 221–224 | DOI | MR | Zbl

[54] Tod K. P., “Cohomogeneity-one metrics with self-dual {W}eyl tensor”, Twistor Theory ({P}lymouth), Lecture Notes in Pure and Appl. Math., 169, ed. S. A. Huggett, Dekker, New York, 1995, 171–184 | MR | Zbl

[55] Tod K. P., “Scalar-flat {K}ähler and hyper-{K}ähler metrics from {P}ainlevé-{III}”, Classical Quantum Gravity, 12 (1995), 1535–1547 | DOI | MR | Zbl

[56] Tod K. P., “‘{S}pecial’ {E}instein–{W}eyl spaces”, Twistor Newsletter, 42 (1997), 13–15

[57] Todd J. A., Projective and analytical geometry, Pitman Publishing Corporation, New York, 1946 | MR | Zbl

[58] Ueno T., “Integrable field theories derived from {$4$}-{D} self-dual gravity”, Modern Phys. Lett. A, 11 (1996), 545–552, arXiv: hep-th/9508012 | DOI | MR | Zbl

[59] Ward R. S., “Integrable and solvable systems, and relations among them”, Philos. Trans. Roy. Soc. London Ser. A, 315 (1985), 451–457 | DOI | MR | Zbl

[60] Ward R. S., “{E}instein–{W}eyl spaces and {$\mathrm{SU}(\infty)$} {T}oda fields”, Classical Quantum Gravity, 7 (1990), L95–L98 | DOI | Zbl

[61] Ward R. S., “Linearization of the {${\rm SU}(\infty)$} {N}ahm equations”, Phys. Lett. B, 234 (1990), 81–84 | DOI | MR

[62] Ward R. S., “The {${\rm SU}(\infty)$} chiral model and self-dual vacuum spaces”, Classical Quantum Gravity, 7 (1990), L217–L222 | DOI | MR | Zbl

[63] Weyl H., Space, time, matter, Dover, New York, 1952 | Zbl

[64] Yoshida M., Hypergeometric functions, my love (modular interpretations of configuration spaces), Aspects of Mathematics, E32, Friedr. Vieweg Sohn, Braunschweig, 1997 | DOI | MR

[65] Calderbank D. M. J., “Selfdual $4$-manifolds, projective structures, and the Dunajski–West construction”, SIGMA, 10 (2014), 035, 18 pp., arXiv: math.DG/0606754 | DOI | Zbl

[66] Donaldson S., Fine J., “Toric anti-self-dual 4-manifolds via complex geometry”, Math. Ann., 336 (2006), 281–309, arXiv: math.DG/0602423 | DOI | MR | Zbl

[67] Dunajski M., “Harmonic functions, central quadrics and twistor theory”, Classical Quantum Gravity, 20 (2003), 3427–3440, arXiv: math.DG/0303181 | DOI | MR | Zbl

[68] Dunajski M., Solitons, instantons, and twistors, Oxford Graduate Texts in Mathematics, 19, Oxford University Press, Oxford, 2010 | MR | Zbl

[69] Dunajski M., Grant J. D. E., Strachan I. A. B., “Multidimensional integrable systems and deformations of {L}ie algebra homomorphisms”, J. Math. Phys., 48 (2007), 093502, 11 pp., arXiv: nlin.SI/0702040 | DOI | MR | Zbl

[70] Dunajski M., Krynski W., “{E}instein–{W}eyl geometry, dispersionless {H}irota equation and {V}eronese webs”, Math. Proc. Cambridge Philos. Soc. (to appear) , arXiv: 1301.0621

[71] Dunajski M., Sparling G., “A dispersionless integrable system associated to {${\rm Diff}(S^1)$} gauge theory”, Phys. Lett. A, 343 (2005), 129–132, arXiv: nlin.SI/0503030 | DOI | MR | Zbl

[72] Dunajski M., West S., “Anti-self-dual conformal structures with null {K}illing vectors from projective structures”, Comm. Math. Phys., 272 (2007), 85–118, arXiv: math.DG/0601419 | DOI | MR | Zbl

[73] Dunajski M., West S., “Anti-self-dual conformal structures in neutral signature”, Recent Developments in Pseudo-{R}iemannian Geometry, ESI Lect. Math. Phys., eds. D. V. Alekseevsky, H. Baum, Eur. Math. Soc., Zürich, 2008, 113–148, arXiv: math.DG/0610280 | DOI | MR | Zbl

[74] Ferapontov E. V., Huard B., Zhang A., “On the central quadric ansatz: integrable models and {P}ainlevé reductions”, J. Phys. A: Math. Theor., 45 (2012), 195204, 11 pp., arXiv: 1201.5061 | DOI | MR | Zbl

[75] Ferapontov E. V., Kruglikov B., Dispersionless integrable systems in 3D and Einstein–Weyl geometry, arXiv: 1208.2728

[76] Fine J., “Toric anti-self-dual {E}instein metrics via complex geometry”, Math. Ann., 340 (2008), 143–157, arXiv: math.DG/0609487 | DOI | MR

[77] LeBrun C., Mason L. J., “Zoll manifolds and complex surfaces”, J. Differential Geom., 61 (2002), 453–535, arXiv: math.DG/0211021 | MR | Zbl

[78] LeBrun C., Mason L. J., “Nonlinear gravitons, null geodesics, and holomorphic disks”, Duke Math. J., 136 (2007), 205–273, arXiv: math.DG/0504582 | DOI | MR | Zbl

[79] LeBrun C., Mason L. J., “The {E}instein–{W}eyl equations, scattering maps, and holomorphic disks”, Math. Res. Lett., 16 (2009), 291–301, arXiv: 0806.3761 | DOI | MR | Zbl

[80] LeBrun C., Mason L. J., “Zoll metrics, branched covers, and holomorphic disks”, Comm. Anal. Geom., 18 (2010), 475–502, arXiv: 1002.2993 | DOI | MR | Zbl

[81] Nakata F., “Self-dual {Z}ollfrei conformal structures with {$\alpha$}-surface foliation”, J. Geom. Phys., 57 (2007), 2077–2097, arXiv: math.DG/0701116 | DOI | MR | Zbl

[82] Nakata F., “Singular self-dual {Z}ollfrei metrics and twistor correspondence”, J. Geom. Phys., 57 (2007), 1477–1498, arXiv: math.DG/0607276 | DOI | MR | Zbl

[83] Nakata F., “A construction of {E}instein–{W}eyl spaces via {L}e{B}run–{M}ason type twistor correspondence”, Comm. Math. Phys., 289 (2009), 663–699, arXiv: 0806.2696 | DOI | MR | Zbl