Hyperkähler Manifolds of Curves in Twistor Spaces
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss hypercomplex and hyperkähler structures obtained from higher degree curves in complex spaces fibring over ${\mathbb{P}}^1$.
Keywords: hyperkähler metrics; hypercomplex structures; twistor methods; projective curves.
@article{SIGMA_2014_10_a32,
     author = {Roger Bielawski},
     title = {Hyperk\"ahler {Manifolds} of {Curves} in {Twistor} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a32/}
}
TY  - JOUR
AU  - Roger Bielawski
TI  - Hyperkähler Manifolds of Curves in Twistor Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a32/
LA  - en
ID  - SIGMA_2014_10_a32
ER  - 
%0 Journal Article
%A Roger Bielawski
%T Hyperkähler Manifolds of Curves in Twistor Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a32/
%G en
%F SIGMA_2014_10_a32
Roger Bielawski. Hyperkähler Manifolds of Curves in Twistor Spaces. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a32/

[1] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | MR | Zbl

[2] Beauville A., “Variétés {K}ähleriennes dont la première classe de {C}hern est nulle”, J. Differential Geom., 18 (1983), 755–782 | MR | Zbl

[3] Bielawski R., “Line bundles on spectral curves and the generalised {L}egendre transform construction of hyperkähler metrics”, J. Geom. Phys., 59 (2009), 374–390, arXiv: 0806.0510 | DOI | MR | Zbl

[4] Bielawski R., Schwachhöfer L., “Hypercomplex limits of pluricomplex structures and the {E}uclidean limit of hyperbolic monopoles”, Ann. Global Anal. Geom., 44 (2013), 245–256, arXiv: 1201.0781 | DOI | MR | Zbl

[5] Cherkis S. A., Hitchin N. J., “Gravitational instantons of type {$D_k$}”, Comm. Math. Phys., 260 (2005), 299–317, arXiv: hep-th/0310084 | DOI | MR | Zbl

[6] Douady A., “Le problème des modules pour les sous-espaces analytiques compacts d'un espace analytique donné”, Ann. Inst. Fourier (Grenoble), 16 (1966), 1–95 | DOI | MR | Zbl

[7] Eisenbud D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 | DOI | MR | Zbl

[8] Eisenbud D., Van de Ven A., “On the normal bundles of smooth rational space curves”, Math. Ann., 256 (1981), 453–463 | DOI | MR | Zbl

[9] Ellia Ph., “Exemples de courbes de {$P^{3}$} à fibré normal semi-stable, stable”, Math. Ann., 264 (1983), 389–396 | DOI | MR | Zbl

[10] Ellingsrud G., Hirschowitz A., “Sur le fibré normal des courbes gauches”, C. R. Acad. Sci. Paris Sér. I Math., 299 (1984), 245–248 | MR | Zbl

[11] Gantmacher F. R., The theory of matrices, v. 1, 2, Chelsea Publishing Co., New York, 1959 | MR

[12] Ghione F., Sacchiero G., “Normal bundles of rational curves in {$P^{3}$}”, Manuscripta Math., 33 (1980), 111–128 | DOI | MR | Zbl

[13] Grauert H., Peternell Th., Remmert R. (eds.), Several complex variables, v. VII, Encyclopaedia of Mathematical Sciences, 74, Sheaf-theoretical methods in complex analysis, Springer-Verlag, Berlin, 1994 | MR

[14] Hartshorne R., Deformation theory, Graduate Texts in Mathematics, 257, Springer, New York, 2010 | DOI | MR | Zbl

[15] Hitchin N. J., Karlhede A., Lindström U., Roček M., “Hyper-{K}ähler metrics and supersymmetry”, Comm. Math. Phys., 108 (1987), 535–589 | DOI | MR | Zbl

[16] Huggett S. A., Merkulov S. A., “Twistor transform of vector bundles”, Math. Scand., 85 (1999), 219–244 | MR | Zbl

[17] Lindström U., Roček M., “New hyper-{K}ähler metrics and new supermultiplets”, Comm. Math. Phys., 115 (1988), 21–29 | DOI | MR | Zbl

[18] Manin Yu. I., Gauge field theory and complex geometry, Grundlehren der Mathematischen Wissenschaften, 289, 2nd ed., Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[19] Nash O., “A new approach to monopole moduli spaces”, Nonlinearity, 20 (2007), 1645–1675 | DOI | MR | Zbl

[20] Pourcin G., “Théorème de {D}ouady au-dessus de {$S$}”, Ann. Scuola Norm. Sup. Pisa, 23 (1969), 451–459 | MR | Zbl

[21] Salamon S. M., “Differential geometry of quaternionic manifolds”, Ann. Sci. École Norm. Sup. (4), 19 (1986), 31–55 | MR | Zbl

[22] Ward R. S., “On self-dual gauge fields”, Phys. Lett. A, 61 (1977), 81–82 | DOI | MR | Zbl