@article{SIGMA_2014_10_a31,
author = {Vyjayanthi Chari and Lisa Schneider and Peri Shereen and Jeffrey Wand},
title = {Modules with {Demazure} {Flags} and {Character} {Formulae}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a31/}
}
TY - JOUR AU - Vyjayanthi Chari AU - Lisa Schneider AU - Peri Shereen AU - Jeffrey Wand TI - Modules with Demazure Flags and Character Formulae JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a31/ LA - en ID - SIGMA_2014_10_a31 ER -
%0 Journal Article %A Vyjayanthi Chari %A Lisa Schneider %A Peri Shereen %A Jeffrey Wand %T Modules with Demazure Flags and Character Formulae %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a31/ %G en %F SIGMA_2014_10_a31
Vyjayanthi Chari; Lisa Schneider; Peri Shereen; Jeffrey Wand. Modules with Demazure Flags and Character Formulae. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a31/
[1] Andrews G. E., Berndt B. C., Ramanujan's lost notebook, v. II, Springer, New York, 2009 | MR
[2] Bianchi A., Macedo T., Moura A., On Demazure and local Weyl modules for affine hyperalgebras, arXiv: 1307.4305
[3] Chari V., Fourier G., Khandai T., “A categorical approach to {W}eyl modules”, Transform. Groups, 15 (2010), 517–549, arXiv: 0906.2014 | DOI | MR | Zbl
[4] Chari V., Ion B., BGG reciprocity for current algebras, arXiv: 1307.1440
[5] Chari V., Loktev S., “Weyl, {D}emazure and fusion modules for the current algebra of {${\mathfrak{sl}}_{r+1}$}”, Adv. Math., 207 (2006), 928–960, arXiv: math.QA/0502165 | DOI | MR | Zbl
[6] Chari V., Pressley A., “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223, arXiv: math.QA/0004174 | DOI | MR | Zbl
[7] Chari V., Venkatesh R., “Demazure modules, fusion products, and $Q$-systems”, arXiv: 1305.2523
[8] Feigin B., Feigin E., “{$q$}-characters of the tensor products in {${\mathfrak{sl}}_2$}-case”, Mosc. Math. J., 2 (2002), 567–588, arXiv: math.QA/0201111 | MR | Zbl
[9] Feigin B., Loktev S., “On generalized {K}ostka polynomials and the quantum {V}erlinde rule”, Differential Topology, Infinite-Dimensional {L}ie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 61–79, arXiv: math.QA/9812093 | MR | Zbl
[10] Fourier G., Littelmann P., “Weyl modules, {D}emazure modules, {KR}-modules, crystals, fusion products and limit constructions”, Adv. Math., 211 (2007), 566–593, arXiv: math.RT/0509276 | DOI | MR | Zbl
[11] Ion B., “Nonsymmetric {M}acdonald polynomials and {D}emazure characters”, Duke Math. J., 116 (2003), 299–318, arXiv: math.QA/0105061 | DOI | MR | Zbl
[12] Joseph A., “Modules with a {D}emazure flag”, Studies in {L}ie Theory, Progr. Math., 243, Birkhäuser Boston, Boston, MA, 2006, 131–169 | DOI | MR | Zbl
[13] Lenart C., Naito S., Sagaki D., Schilling A., Shimozono M., “A uniform model for Kirillov–Reshetikhin crystals”, Discrete Math. Theor. Comput. Sci. Proc., 2013, 25–36, arXiv: 1211.6019 | Zbl
[14] Lusztig G., Introduction to quantum groups, Progr. Math., 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | MR | Zbl
[15] Naoi K., “Weyl modules, {D}emazure modules and finite crystals for non-simply laced type”, Adv. Math., 229 (2012), 875–934, arXiv: 1012.5480 | DOI | MR | Zbl
[16] Sanderson Y. B., “On the connection between {M}acdonald polynomials and {D}emazure characters”, J. Algebraic Combin., 11 (2000), 269–275 | DOI | MR | Zbl