@article{SIGMA_2014_10_a3,
author = {Jes\'us A. \'Alvarez L\'opez and Manuel Calaza},
title = {Embedding {Theorems} for the {Dunkl} {Harmonic} {Oscillator} on the {Line}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a3/}
}
TY - JOUR AU - Jesús A. Álvarez López AU - Manuel Calaza TI - Embedding Theorems for the Dunkl Harmonic Oscillator on the Line JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a3/ LA - en ID - SIGMA_2014_10_a3 ER -
Jesús A. Álvarez López; Manuel Calaza. Embedding Theorems for the Dunkl Harmonic Oscillator on the Line. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a3/
[1] Álvarez López J., Calaza M., Application of the method of Bonan–Clark to the generalized Hermite polynomials, arXiv: 1101.5022
[2] Álvarez López J., Calaza M., Witten's perturbation on strata, arXiv: 1205.0348
[3] Askey R., Wainger S., “Mean convergence of expansions in {L}aguerre and {H}ermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl
[4] Bonan S. S., Clark D. S., “Estimates of the {H}ermite and the {F}reud polynomials”, J. Approx. Theory, 63 (1990), 210–224 | DOI | MR | Zbl
[5] Brasselet J. P., Hector G., Saralegi M., “{${\mathcal L}^2$}-cohomologie des espaces stratifiés”, Manuscripta Math., 76 (1992), 21–32 | DOI | MR | Zbl
[6] Brüning J., Lesch M., “Hilbert complexes”, J. Funct. Anal., 108 (1992), 88–132 | DOI | MR
[7] Cheeger J., “On the {H}odge theory of {R}iemannian pseudomanifolds”, Geometry of the {L}aplace Operator, {P}roc. {S}ympos. {P}ure {M}ath. ({U}niv. {H}awaii, {H}onolulu, {H}awaii, 1979), Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, R.I., 1980, 91–146 | DOI | MR
[8] Cheeger J., “Spectral geometry of singular {R}iemannian spaces”, J. Differential Geom., 18 (1983), 575–657 | MR | Zbl
[9] Chihara T. S., Generalized Hermite polynomials, Ph.D. Thesis, Purdue University, 1955 | MR
[10] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York, 1978 | MR | Zbl
[11] Dickinson D., Warsi S. A., “On a generalized {H}ermite polynomial and a problem of {C}arlitz”, Boll. Un. Mat. Ital., 18 (1963), 256–259 | MR | Zbl
[12] Dunkl C. F., “Reflection groups and orthogonal polynomials on the sphere”, Math. Z., 197 (1988), 33–60 | DOI | MR | Zbl
[13] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[14] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[15] Dunkl C. F., “Symmetric functions and {$B_N$}-invariant spherical harmonics”, J. Phys. A: Math. Gen., 35 (2002), 10391–10408, arXiv: math.CA/0207122 | DOI | MR | Zbl
[16] Dutta M., Chatterjea S. K., More K. L., “On a class of generalized {H}ermite polynomials”, Bull. Inst. Math. Acad. Sinica, 3 (1975), 377–381 | MR | Zbl
[17] Erdélyi A., “Asymptotic forms for {L}aguerre polynomials”, J. Indian Math. Soc., 24 (1960), 235–250 | MR
[18] Goresky M., MacPherson R., “Morse theory and intersection homology theory”, Astérisque, 101 (1983), 135–192 | MR | Zbl
[19] Hörmander L., The analysis of linear partial differential operators, v. I, Grundlehren der Mathematischen Wissenschaften, 256, Distribution theory and Fourier analysis, 2nd ed., Springer-Verlag, Berlin, 1990 | MR
[20] Mather J., Notes on topological stability, Hardvard University, 1970 http://www.math.princeton.edu/facultypapers/mather/notes_on_topological_stability.pdf
[21] Muckenhoupt B., “Asymptotic forms for {L}aguerre polynomials”, Proc. Amer. Math. Soc., 24 (1970), 288–292 | DOI | MR | Zbl
[22] Muckenhoupt B., “Mean convergence of {H}ermite and {L}aguerre series, II”, Trans. Amer. Math. Soc., 147 (1970), 433–460 | DOI | MR
[23] Nagase M., “{$L^{2}$}-cohomology and intersection homology of stratified spaces”, Duke Math. J., 50 (1983), 329–368 | DOI | MR | Zbl
[24] Nagase M., “Sheaf theoretic {$L^2$}-cohomology”, Adv. Stud. Pure Math., 8, 1986, 273–279 | MR
[25] Nowak A., Stempak K., “Imaginary powers of the {D}unkl harmonic oscillator”, SIGMA, 5 (2009), 016, 12 pp., arXiv: 0902.1958 | DOI | MR | Zbl
[26] Nowak A., Stempak K., “Riesz transforms for the {D}unkl harmonic oscillator”, Math. Z., 262 (2009), 539–556, arXiv: 0802.0474 | DOI | MR | Zbl
[27] Plyushchay M., “Hidden nonlinear supersymmetries in pure parabosonic systems”, Internat. J. Modern Phys. A, 15 (2000), 3679–3698, arXiv: hep-th/9903130 | DOI | MR | Zbl
[28] Roe J., Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, 395, 2nd ed., Longman, Harlow, 1998 | MR | Zbl
[29] Rosenblum M., “Generalized {H}ermite polynomials and the {B}ose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics ({B}eer {S}heva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396, arXiv: math.CA/9307224 | MR | Zbl
[30] Rösler M., Comm. Math. Phys., 192 (1998), Generalized {H}ermite polynomials and the heat equation for {D}unkl operators, arXiv: q-alg/9703006 | DOI
[31] Rösler M., “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Math., 1817, Springer, Berlin, 2003, 93–135, arXiv: math.CA/0210366 | DOI | MR
[32] Szeg{ő} G., Orthogonal polynomials, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[33] Thom R., “Ensembles et morphismes stratifiés”, Bull. Amer. Math. Soc., 75 (1969), 240–284 | DOI | MR | Zbl
[34] Verona A., Stratified mappings – structure and triangulability, Lecture Notes in Math., 1102, Springer-Verlag, Berlin, 1984 | MR | Zbl
[35] Watanabe S., “An embedding theorem of {S}obolev type for an operator with singularity”, Proc. Amer. Math. Soc., 125 (1997), 839–848 | DOI | MR | Zbl
[36] Watanabe S., “A generalized {F}ourier transform and its applications”, Integral Transforms Spec. Funct., 13 (2002), 321–344 | DOI | MR | Zbl
[37] Watanabe S., “An embedding theorem of {S}obolev type”, Integral Transforms Spec. Funct., 15 (2004), 369–374 | DOI | MR | Zbl
[38] Witten E., “Supersymmetry and {M}orse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl
[39] Yang L. M., “A note on the quantum rule of the harmonic oscillator”, Phys. Rev., 84 (1951), 788–790 | DOI | MR | Zbl