@article{SIGMA_2014_10_a28,
author = {Micha{\l} Eckstein},
title = {On {Projections} in the {Noncommutative} {2-Torus} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a28/}
}
Michał Eckstein. On Projections in the Noncommutative 2-Torus Algebra. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a28/
[1] Bars I., Kajiura H., Matsuo Y., Takayanagi T., “Tachyon condensation on a noncommutative torus”, Phys. Rev. D, 63 (2001), 086001, 8 pp., arXiv: hep-th/0010101 | DOI | MR
[2] Boca F. P., “Projections in rotation algebras and theta functions”, Comm. Math. Phys., 202 (1999), 325–357, arXiv: math.OA/9803134 | DOI | MR | Zbl
[3] Connes A., “{$C^* $} algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris Sér. A-B, 290 (1980), A599–A604, arXiv: hep-th/0101093 | MR
[4] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[5] Connes A., Douglas M. R., Schwarz A., “Noncommutative geometry and matrix theory: compactification on tori”, J. High Energy Phys., 1998:2 (1998), 003, 35 pp., arXiv: hep-th/9711162 | DOI | MR
[6] Eckstein M., Anomalies in noncommutative geometry, {M}aster's Thesis, Jagellonian University, 2010
[7] Elliott G. A., Evans D. E., “The structure of the irrational rotation {$C^*$}-algebra”, Ann. of Math., 138 (1993), 477–501 | DOI | MR | Zbl
[8] Exel R., Loring T. A., “Invariants of almost commuting unitaries”, J. Funct. Anal., 95 (1991), 364–376 | DOI | MR | Zbl
[9] Frohman C., Gelca R., “Skein modules and the noncommutative torus”, Trans. Amer. Math. Soc., 352 (2000), 4877–4888, arXiv: math.QA/9806107 | DOI | MR | Zbl
[10] Gracia-Bondía J. M., Várilly J. C., Figueroa H., Elements of noncommutative geometry, Birkhäuser Advanced Texts, Birkhäuser Boston, Inc., Boston, MA, 2001 | MR | Zbl
[11] Khalkhali M., Basic noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2009 | DOI | MR | Zbl
[12] Krajewski T., Schnabl M., “Exact solitons on non-commutative tori”, J. High Energy Phys., 2001:8 (2001), 002, 22 pp., arXiv: hep-th/0104090 | DOI | MR
[13] Landi G., Lizzi F., Szabo R. J., “Matrix quantum mechanics and soliton regularization of noncommutative field theory”, Adv. Theor. Math. Phys., 8 (2004), 1–82, arXiv: hep-th/0401072 | DOI | MR | Zbl
[14] Luef F., “Projections in noncommutative tori and {G}abor frames”, Proc. Amer. Math. Soc., 139 (2011), 571–582, arXiv: 1003.3719 | DOI | MR | Zbl
[15] Perrot D., “Anomalies and noncommutative index theory”, Geometric and Topological Methods for Quantum Field Theory, Contemp. Math., 434, Amer. Math. Soc., Providence, RI, 2007, 125–160, arXiv: hep-th/0603209 | DOI | MR | Zbl
[16] Pimsner M., Voiculescu D., “Exact sequences for {$K$}-groups and {E}xt-groups of certain cross-product {$C^*$}-algebras”, J. Operator Theory, 4 (1980), 93–118 | MR | Zbl
[17] Rieffel M. A., “{$C^*$}-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl
[18] Rieffel M. A., “The cancellation theorem for projective modules over irrational rotation {$C^*$}-algebras”, Proc. London Math. Soc., 47 (1983), 285–302 | DOI | MR | Zbl
[19] Rieffel M. A., “Projective modules over higher-dimensional noncommutative tori”, Canad. J. Math., 40 (1988), 257–338 | DOI | MR | Zbl
[20] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[21] Várilly J. C., An introduction to noncommutative geometry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006 | DOI | MR