Rigged Configurations and Kashiwara Operators
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For types $A^{(1)}_n$ and $D^{(1)}_n$ we prove that the rigged configuration bijection intertwines the classical Kashiwara operators on tensor products of the arbitrary Kirillov–Reshetikhin crystals and the set of the rigged configurations.
Keywords: crystal bases; rigged configurations; quantum affine algebras; box-ball systems.
@article{SIGMA_2014_10_a27,
     author = {Reiho Sakamoto},
     title = {Rigged {Configurations} and {Kashiwara} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a27/}
}
TY  - JOUR
AU  - Reiho Sakamoto
TI  - Rigged Configurations and Kashiwara Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a27/
LA  - en
ID  - SIGMA_2014_10_a27
ER  - 
%0 Journal Article
%A Reiho Sakamoto
%T Rigged Configurations and Kashiwara Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a27/
%G en
%F SIGMA_2014_10_a27
Reiho Sakamoto. Rigged Configurations and Kashiwara Operators. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a27/

[1] Alba V. A., Fateev V. A., Litvinov A. V., Tarnopolskiy G. M., “On combinatorial expansion of the conformal blocks arising from {AGT} conjecture”, Lett. Math. Phys., 98 (2011), 33–64, arXiv: 1012.1312 | DOI | MR | Zbl

[2] Belavin A., Belavin V., “A{GT} conjecture and integrable structure of conformal field theory for {$c=1$}”, Nuclear Phys. B, 850 (2011), 199–213, arXiv: 1102.0343 | DOI | MR | Zbl

[3] Cai W., Jing N., “Applications of a {L}aplace–{B}eltrami operator for {J}ack polynomials”, European J. Combin., 33 (2012), 556–571, arXiv: 1101.5544 | DOI | MR | Zbl

[4] Deka L., Schilling A., “New fermionic formula for unrestricted {K}ostka polynomials”, J. Combin. Theory Ser. A, 113 (2006), 1435–1461, arXiv: math.CO/0509194 | DOI | MR | Zbl

[5] Desrosiers P., Lapointe L., Mathieu P., “Superconformal field theory and {J}ack superpolynomials”, J. High Energy Phys., 2012:9 (2012), 037, 42 pp., arXiv: 1205.0784 | DOI | MR

[6] Estienne B., Pasquier V., Santachiara R., Serban D., “Conformal blocks in {V}irasoro and {W} theories: duality and the {C}alogero–{S}utherland model”, Nuclear Phys. B, 860 (2012), 377–420, arXiv: 1110.1101 | DOI | MR | Zbl

[7] Feigin B. L., Fuchs D. B., “Representations of the {V}irasoro algebra”, Representation of {L}ie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 465–554 | MR

[8] Feigin M. V., Hallnäs M. A., Veselov A. P., “Baker–{A}khiezer functions and generalised {M}acdonald–{M}ehta integrals”, J. Math. Phys., 54 (2013), 052106, 22 pp., arXiv: 1210.5270 | DOI | MR | Zbl

[9] Fukuda K., Yamada Y., Okado M., “Energy functions in box ball systems”, Internat. J. Modern Phys. A, 15 (2000), 1379–1392, arXiv: math.QA/9908116 | DOI | MR | Zbl

[10] Hatayama G., Hikami K., Inoue R., Kuniba A., Takagi T., Tokihiro T., “The {$A^{(1)}_M$} automata related to crystals of symmetric tensors”, J. Math. Phys., 42 (2001), 274–308, arXiv: math.QA/9912209 | DOI | MR | Zbl

[11] Hatayama G., Kuniba A., Takagi T., “Soliton cellular automata associated with crystal bases”, Nuclear Phys. B, 577 (2000), 619–645, arXiv: solv-int/9907020 | DOI | MR | Zbl

[12] Hatayama G., Kuniba A., Takagi T., “Simple algorithm for factorized dynamics of the {${\mathfrak g}_n$}-automaton”, J. Phys. A: Math. Gen., 34 (2001), 10697–10705, arXiv: nlin.CG/0103022 | DOI | MR | Zbl

[13] Kac V. G., Infinite-dimensional {L}ie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[14] Kashiwara M., “On crystal bases of the {$Q$}-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl

[15] Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés, v. 9, Société Mathématique de France, Paris, 2002 | MR | Zbl

[16] Kashiwara M., Nakashima T., “Crystal graphs for representations of the {$q$}-analogue of classical {L}ie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl

[17] Kerov S. V., Kirillov A. N., Reshetikhin N. Y., “Combinatorics, the {B}ethe ansatz and representations of the symmetric group”, J. Soviet Math., 41 (1988), 916–924 | DOI | MR | Zbl

[18] Kirillov A. N., Reshetikhin N. Y., “The {B}ethe ansatz and the combinatorics of {Y}oung tableaux”, J. Soviet Math., 41 (1988), 925–955 | DOI | MR | Zbl

[19] Kirillov A. N., Schilling A., Shimozono M., “A bijection between {L}ittlewood–{R}ichardson tableaux and rigged configurations”, Selecta Math. (N.S.), 8 (2002), 67–135, arXiv: math.CO/9901037 | DOI | MR | Zbl

[20] Kuniba A., Okado M., Sakamoto R., Takagi T., Yamada Y., “Crystal interpretation of {K}erov–{K}irillov–{R}eshetikhin bijection”, Nuclear Phys. B, 740 (2006), 299–327, arXiv: math.QA/0601630 | DOI | MR | Zbl

[21] Kuniba A., Sakamoto R., Yamada Y., “Generalized energies and integrable {$D_n^{(1)}$} cellular automaton”, New Trends in Quantum Integrable Systems, World Sci. Publ., Hackensack, NJ, 2011, 221–242, arXiv: 1001.1813 | DOI | MR | Zbl

[22] Mimachi K., Yamada Y., “Singular vectors of the {V}irasoro algebra in terms of {J}ack symmetric polynomials”, Comm. Math. Phys., 174 (1995), 447–455 | DOI | MR | Zbl

[23] Okado M., Sakamoto R., “Stable rigged configurations for quantum affine algebras of nonexceptional types”, Adv. Math., 228 (2011), 1262–1293, arXiv: 1008.0460 | DOI | MR | Zbl

[24] Okado M., Sakamoto R., Schilling A., “Affine crystal structure on rigged configurations of type {$D_n^{(1)}$}”, J. Algebraic Combin., 37 (2013), 571–599, arXiv: 1109.3523 | DOI | MR | Zbl

[25] Okado M., Sakamoto R., Schilling A., Kerov–Kirillov–Reshetikhin type bijection for $D^{(1)}_n$, in preparation

[26] Okado M., Sano N., “K{KR} type bijection for the exceptional affine algebra {$E_6^{(1)}$}”, Algebraic Groups and Quantum Groups, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012, 227–242, arXiv: 1105.1636 | DOI | MR

[27] Okado M., Schilling A., Shimozono M., “A crystal to rigged configuration bijection for nonexceptional affine algebras”, Algebraic Combinatorics and Quantum Groups, World Sci. Publ., River Edge, NJ, 2003, 85–124, arXiv: math.QA/0203163 | DOI | MR | Zbl

[28] Sakamoto R., “Kirillov–{S}chilling–{S}himozono bijection as energy functions of crystals”, Int. Math. Res. Not., 2009 (2009), 579–614, arXiv: 0711.4185 | DOI | MR | Zbl

[29] Sakamoto R., Ultradiscrete soliton systems and combinatorial representation theory, arXiv: 1212.2774

[30] Sakamoto R., Shiraishi J., Arnaudon D., Frappat L., Ragoucy E., “Correspondence between conformal field theory and {C}alogero–{S}utherland model”, Nuclear Phys. B, 704 (2005), 490–509, arXiv: hep-th/0407267 | DOI | MR | Zbl

[31] Schilling A., “A bijection between type {$D^{(1)}_n$} crystals and rigged configurations”, J. Algebra, 285 (2005), 292–334, arXiv: math.QA/0406248 | DOI | MR | Zbl

[32] Schilling A., “Crystal structure on rigged configurations”, Int. Math. Res. Not., 2006 (2006), 97376, 27 pp., arXiv: math.QA/0508107 | DOI | MR | Zbl

[33] Schilling A., “Combinatorial structure of {K}irillov–{R}eshetikhin crystals of type $D^{(1)}_n$, $B^{(1)}_n$, $A^{(2)}_{2n-1}$”, J. Algebra, 319 (2008), 2938–2962, arXiv: 0704.2046 | DOI | MR | Zbl

[34] Schilling A., Shimozono M., “{$X=M$} for symmetric powers”, J. Algebra, 295 (2006), 562–610, arXiv: math.QA/0412376 | DOI | MR | Zbl

[35] Sutherland B., “Exact results for a quantum many-body problem in one dimension”, Phys. Rev. A, 4 (1971), 2019–2021 | DOI

[36] Sutherland B., “Exact results for a quantum many-body problem in one dimension, II”, Phys. Rev. A, 5 (1972), 1372–1376 | DOI

[37] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR