The Structure of Line Bundles over Quantum Teardrops
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Over the quantum weighted 1-dimensional complex projective spaces, called quantum teardrops, the quantum line bundles associated with the quantum principal $\mathrm{U}(1)$-bundles introduced and studied by Brzezinski and Fairfax are explicitly identified among the finitely generated projective modules which are classified up to isomorphism. The quantum lens space in which these quantum line bundles are embedded is realized as a concrete groupoid $C^*$-algebra.
Keywords: quantum line bundle; quantum principal bundle; quantum teardrop; quantum lens space; groupoid $C^*$-algebra; finitely generated projective module; quantum group.
@article{SIGMA_2014_10_a26,
     author = {Albert Jeu-Liang Sheu},
     title = {The {Structure} of {Line} {Bundles} over {Quantum} {Teardrops}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/}
}
TY  - JOUR
AU  - Albert Jeu-Liang Sheu
TI  - The Structure of Line Bundles over Quantum Teardrops
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/
LA  - en
ID  - SIGMA_2014_10_a26
ER  - 
%0 Journal Article
%A Albert Jeu-Liang Sheu
%T The Structure of Line Bundles over Quantum Teardrops
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/
%G en
%F SIGMA_2014_10_a26
Albert Jeu-Liang Sheu. The Structure of Line Bundles over Quantum Teardrops. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/

[1] Bach K. A., A cancellation problem for quantum spheres, Ph. D. Thesis, University of Kansas, Lawrence, 2003

[2] Blackadar B., {$K$}-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, 2nd ed., Cambridge University Press, Cambridge, 1998 | MR | Zbl

[3] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl

[4] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[5] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: hep-th/9208007 | DOI | MR | Zbl

[6] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl

[7] Curto R. E., Muhly P. S., “{$C^*$}-algebras of multiplication operators on {B}ergman spaces”, J. Funct. Anal., 64 (1985), 315–329 | DOI | MR | Zbl

[8] Gootman E. C., Rosenberg J., “The structure of crossed product {$C^*$}-algebras: a proof of the generalized {E}ffros–{H}ahn conjecture”, Invent. Math., 52 (1979), 283–298 | DOI | MR

[9] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[10] Hajac P. M., Private communication

[11] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl

[12] Husemoller D., Fibre bundles, McGraw-Hill Book Co., New York–London–Sydney, 1966 | MR | Zbl

[13] Kumjian A., Pask D., Raeburn I., Renault J., “Graphs, groupoids, and {C}untz–{K}rieger algebras”, J. Funct. Anal., 144 (1997), 505–541 | DOI | MR

[14] Muhly P. S., Renault J. N., “{$C^*$}-algebras of multivariable {W}iener–{H}opf operators”, Trans. Amer. Math. Soc., 274 (1982), 1–44 | DOI | MR | Zbl

[15] Paterson A. L. T., “Graph inverse semigroups, groupoids and their {$C^*$}-algebras”, J. Operator Theory, 48 (2002), 645–662, arXiv: math.OA/0304355 | MR | Zbl

[16] Peterka M. A., “Finitely-generated projective modules over the {$\theta$}-deformed 4-sphere”, Comm. Math. Phys., 321 (2013), 577–603, arXiv: 1203.6441 | DOI | MR | Zbl

[17] Renault J., A groupoid approach to {$C^*$}-algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980 | MR | Zbl

[18] Rieffel M. A., “Dimension and stable rank in the {$K$}-theory of {$C^*$}-algebras”, Proc. London Math. Soc., 46 (1983), 301–333 | DOI | MR | Zbl

[19] Rieffel M. A., “The cancellation theorem for projective modules over irrational rotation {$C^*$}-algebras”, Proc. London Math. Soc., 47 (1983), 285–302 | DOI | MR | Zbl

[20] Rieffel M. A., “Projective modules over higher-dimensional noncommutative tori”, Canad. J. Math., 40 (1988), 257–338 | DOI | MR | Zbl

[21] Salinas N., Sheu A. J. L., Upmeier H., “Toeplitz operators on pseudoconvex domains and foliation {$C^*$}-algebras”, Ann. of Math., 130 (1989), 531–565 | DOI | MR | Zbl

[22] Sheu A. J. L., “A cancellation theorem for modules over the group {$C^*$}-algebras of certain nilpotent {L}ie groups”, Canad. J. Math., 39 (1987), 365–427 | DOI | MR | Zbl

[23] Sheu A. J. L., “Compact quantum groups and groupoid {$C^*$}-algebras”, J. Funct. Anal., 144 (1997), 371–393 | DOI | MR | Zbl

[24] Sheu A. J. L., “The structure of quantum spheres”, Proc. Amer. Math. Soc., 129 (2001), 3307–3311 | DOI | MR | Zbl

[25] Swan R. G., “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR | Zbl

[26] Vaksman L. L., Soibelman Ya. S., “Algebra of functions on the quantum group {${\rm SU}(n+1)$}, and odd-dimensional quantum spheres”, Leningrad Math. J., 2 (1991), 1023–1042 | MR

[27] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl

[28] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques ({L}es {H}ouches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl