@article{SIGMA_2014_10_a26,
author = {Albert Jeu-Liang Sheu},
title = {The {Structure} of {Line} {Bundles} over {Quantum} {Teardrops}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/}
}
Albert Jeu-Liang Sheu. The Structure of Line Bundles over Quantum Teardrops. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a26/
[1] Bach K. A., A cancellation problem for quantum spheres, Ph. D. Thesis, University of Kansas, Lawrence, 2003
[2] Blackadar B., {$K$}-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, 2nd ed., Cambridge University Press, Cambridge, 1998 | MR | Zbl
[3] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl
[4] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[5] Brzeziński T., Majid S., “Quantum group gauge theory on quantum spaces”, Comm. Math. Phys., 157 (1993), 591–638, arXiv: hep-th/9208007 | DOI | MR | Zbl
[6] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 | MR | Zbl
[7] Curto R. E., Muhly P. S., “{$C^*$}-algebras of multiplication operators on {B}ergman spaces”, J. Funct. Anal., 64 (1985), 315–329 | DOI | MR | Zbl
[8] Gootman E. C., Rosenberg J., “The structure of crossed product {$C^*$}-algebras: a proof of the generalized {E}ffros–{H}ahn conjecture”, Invent. Math., 52 (1979), 283–298 | DOI | MR
[9] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl
[10] Hajac P. M., Private communication
[11] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl
[12] Husemoller D., Fibre bundles, McGraw-Hill Book Co., New York–London–Sydney, 1966 | MR | Zbl
[13] Kumjian A., Pask D., Raeburn I., Renault J., “Graphs, groupoids, and {C}untz–{K}rieger algebras”, J. Funct. Anal., 144 (1997), 505–541 | DOI | MR
[14] Muhly P. S., Renault J. N., “{$C^*$}-algebras of multivariable {W}iener–{H}opf operators”, Trans. Amer. Math. Soc., 274 (1982), 1–44 | DOI | MR | Zbl
[15] Paterson A. L. T., “Graph inverse semigroups, groupoids and their {$C^*$}-algebras”, J. Operator Theory, 48 (2002), 645–662, arXiv: math.OA/0304355 | MR | Zbl
[16] Peterka M. A., “Finitely-generated projective modules over the {$\theta$}-deformed 4-sphere”, Comm. Math. Phys., 321 (2013), 577–603, arXiv: 1203.6441 | DOI | MR | Zbl
[17] Renault J., A groupoid approach to {$C^*$}-algebras, Lecture Notes in Mathematics, 793, Springer, Berlin, 1980 | MR | Zbl
[18] Rieffel M. A., “Dimension and stable rank in the {$K$}-theory of {$C^*$}-algebras”, Proc. London Math. Soc., 46 (1983), 301–333 | DOI | MR | Zbl
[19] Rieffel M. A., “The cancellation theorem for projective modules over irrational rotation {$C^*$}-algebras”, Proc. London Math. Soc., 47 (1983), 285–302 | DOI | MR | Zbl
[20] Rieffel M. A., “Projective modules over higher-dimensional noncommutative tori”, Canad. J. Math., 40 (1988), 257–338 | DOI | MR | Zbl
[21] Salinas N., Sheu A. J. L., Upmeier H., “Toeplitz operators on pseudoconvex domains and foliation {$C^*$}-algebras”, Ann. of Math., 130 (1989), 531–565 | DOI | MR | Zbl
[22] Sheu A. J. L., “A cancellation theorem for modules over the group {$C^*$}-algebras of certain nilpotent {L}ie groups”, Canad. J. Math., 39 (1987), 365–427 | DOI | MR | Zbl
[23] Sheu A. J. L., “Compact quantum groups and groupoid {$C^*$}-algebras”, J. Funct. Anal., 144 (1997), 371–393 | DOI | MR | Zbl
[24] Sheu A. J. L., “The structure of quantum spheres”, Proc. Amer. Math. Soc., 129 (2001), 3307–3311 | DOI | MR | Zbl
[25] Swan R. G., “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR | Zbl
[26] Vaksman L. L., Soibelman Ya. S., “Algebra of functions on the quantum group {${\rm SU}(n+1)$}, and odd-dimensional quantum spheres”, Leningrad Math. J., 2 (1991), 1023–1042 | MR
[27] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl
[28] Woronowicz S. L., “Compact quantum groups”, Symétries Quantiques ({L}es {H}ouches, 1995), North-Holland, Amsterdam, 1998, 845–884 | MR | Zbl