@article{SIGMA_2014_10_a25,
author = {Yasushi Kajihara},
title = {Symmetry {Groups} of $A_n$ {Hypergeometric} {Series}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a25/}
}
Yasushi Kajihara. Symmetry Groups of $A_n$ Hypergeometric Series. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a25/
[1] Bailey W. N., “Transformations of generalized hypergeometric series”, Proc. London Math. Soc. (2), 29, 1929, 495–516 | DOI | MR
[2] Bailey W. N., Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, 32, Stechert-Hafner, Inc., New York, 1964 | MR
[3] Beyer W. A., Louck J. D., Stein P. R., “Group theoretical basis of some identities for the generalized hypergeometric series”, J. Math. Phys., 28 (1987), 497–508 | DOI | MR | Zbl
[4] Bourbaki N., Éléments de mathématique. {F}asc. {XXXIV}. {G}roupes et algèbres de {L}ie. {C}hapitre {IV}: {G}roupes de {C}oxeter et systèmes de {T}its; {C}hapitre {V}: {G}roupes engendrés par des réflexions; {C}hapitre {VI}: {S}ystèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | MR | Zbl
[5] Formichella M., Green R. M., Stade E., “Coxeter group actions on {${}_4F_3(1)$} hypergeometric series”, Ramanujan J., 24 (2011), 93–128, arXiv: 0810.0518 | DOI | MR | Zbl
[6] Frenkel I. B., Turaev V. G., “Elliptic solutions of the {Y}ang–{B}axter equation and modular hypergeometric functions”, The {A}rnold–{G}elfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl
[7] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[8] Hardy G. H., Ramanujan: twelve lectures on subjects suggested by his life and work, Chelsea Publishing Company, New York, 1959 | MR | Zbl
[9] Holman W. J., “Summation theorems for hypergeometric series in {${\rm U}(n)$}”, SIAM J. Math. Anal., 11 (1980), 523–532 | DOI | MR | Zbl
[10] Holman W. J., Biedenharn L. C., Louck J. D., “On hypergeometric series well-poised in ${\rm SU}(n)$”, SIAM J. Math. Anal., 7 (1976), 529–541 | DOI | MR | Zbl
[11] Humphreys J. E., Reflection groups and {C}oxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[12] Iwahori N., Matsumoto H., “On some {B}ruhat decomposition and the structure of the {H}ecke rings of {${\mathfrak p}$}-adic {C}hevalley groups”, Inst. Hautes Études Sci. Publ. Math., 1965, 5–48 | DOI | MR | Zbl
[13] Kajihara Y., “Some remarks on multiple {S}ears transformations”, {$q$}-Series with Applications to Combinatorics, Number Theory, and Physics ({U}rbana, {IL}, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 139–145 | DOI | MR | Zbl
[14] Kajihara Y., “Euler transformation formula for multiple basic hypergeometric series of type {$A$} and some applications”, Adv. Math., 187 (2004), 53–97 | DOI | MR | Zbl
[15] Kajihara Y., “Multiple generalizations of {$q$}-series identities and related formulas”, Partitions, {$q$}-Series, and Modular Forms, Dev. Math., 23, Springer, New York, 2012, 159–180 | DOI | MR | Zbl
[16] Kajihara Y., Multiple basic hypergeometric transformation formulas arising from the balanced duality transformation, arXiv: 1310.1984
[17] Kajihara Y., Noumi M., “Multiple elliptic hypergeometric series. {A}n approach from the {C}auchy determinant”, Indag. Math. (N.S.), 14 (2003), 395–421, arXiv: math.CA/0306219 | DOI | MR | Zbl
[18] Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., “{${}_{10}E_9$} solution to the elliptic {P}ainlevé equation”, J. Phys. A: Math. Gen., 36 (2003), L263–L272 | DOI | MR | Zbl
[19] Kirillov A. N., “Clebsch–{G}ordan quantum coefficients”, J. Sov. Math., 53 (1991), 264–276 | DOI | MR | Zbl
[20] Kirillov A. N., Reshetikhin N. Yu., “Representations of the algebra {${U}_q({\rm sl}(2)),q$}-orthogonal polynomials and invariants of links”, Infinite-Dimensional {L}ie Algebras and Groups ({L}uminy-{M}arseille, 1988), Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, 285–339 | MR
[21] Krattenthaler C., Rivoal T., How can we escape {T}homae's relations?, J. Math. Soc. Japan, 58 (2006), 183–210, arXiv: math.CA/0502276 | DOI | MR | Zbl
[22] Krattenthaler C., Srinivasa Rao K., “On group theoretical aspects, hypergeometric transformations and symmetries of angular momentum coefficients”, Symmetries in Science {XI}, Kluwer Acad. Publ., Dordrecht, 2004, 355–376 | MR
[23] Lievens S., Van der Jeugt J., “Symmetry groups of {B}ailey's transformations for {$_{10}\phi_9$}-series”, J. Comput. Appl. Math., 206 (2007), 498–519 | DOI | MR | Zbl
[24] Milne S. C., “Transformations of {${\rm U}(n+1)$} multiple basic hypergeometric series”, Physics and Combinatorics ({N}agoya, 1999), World Sci. Publ., River Edge, NJ, 2001, 201–243 | DOI | MR | Zbl
[25] Milne S. C., Newcomb J. W., “{${\rm U}(n)$} very-well-poised {$_{10}\phi_9$} transformations”, J. Comput. Appl. Math., 68 (1996), 239–285 | DOI | MR | Zbl
[26] Mishev I. D., “Coxeter group actions on {S}aalschützian {${}_4F_3(1)$} series and very-well-poised {${}_7F_6(1)$} series”, J. Math. Anal. Appl., 385 (2012), 1119–1133, arXiv: 1008.1011 | DOI | MR | Zbl
[27] Rains E. M., “Recurrences for elliptic hypergeometric integrals”, Elliptic Integrable Systems, Rokko Lectures in Mathematics, 18, eds. M. Noumi, K. Takasaki, Kobe University, 2005, 183–199, arXiv: math.CA/0504285 | MR
[28] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl
[29] Rosengren H., “Elliptic hypergeometric series on root systems”, Adv. Math., 181 (2004), 417–447, arXiv: math.CA/0207046 | DOI | MR | Zbl
[30] Rosengren H., “New transformations for elliptic hypergeometric series on the root system {$A_n$}”, Ramanujan J., 12 (2006), 155–166, arXiv: math.CA/0305379 | DOI | MR | Zbl
[31] Sakai H., “Rational surfaces associated with affine root systems and geometry of the {P}ainlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[32] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canadian J. Math., 6 (1954), 274–304 | DOI | MR | Zbl
[33] Thomae J., “Ueber die Functionen, welche durch Reihen von der Form dargestellt werden $1 + \frac{p}{1} \frac{p'}{q'} \frac{p''}{q''} +\frac{p}{1} \frac{p+1}{2} \frac{p'}{q'} \frac{p'+1}{q' +1} \frac{p''}{q''} \frac{p''+ 1}{q'' + 1}+ \cdots $”, J. Reine Angew. Math., 87 (1879), 26–73 | DOI
[34] van de Bult F. J., Rains E. M., Stokman J. V., “Properties of generalized univariate hypergeometric functions”, Comm. Math. Phys., 275 (2007), 37–95, arXiv: math.CA/0607250 | DOI | MR | Zbl
[35] Van der Jeugt J., Srinivasa Rao K., “Invariance groups of transformations of basic hypergeometric series”, J. Math. Phys., 40 (1999), 6692–6700 | DOI | MR | Zbl
[36] Whipple F. J. W., “A group of generalized hypergeometric series: relations between 120 allied series of the type $F[a, b, c; d, e]$”, Proc. London Math. Soc. (2), 23 (1925), 104–114 | DOI | MR
[37] Whittaker E. T., Watson G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | MR | Zbl