@article{SIGMA_2014_10_a24,
author = {Maximilian Hanusch},
title = {A {Characterization} of {Invariant} {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a24/}
}
Maximilian Hanusch. A Characterization of Invariant Connections. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a24/
[1] Ashtekar A., Bojowald M., Lewandowski J., “Mathematical structure of loop quantum cosmology”, Adv. Theor. Math. Phys., 7 (2003), 233–268, arXiv: gr-qc/0304074 | DOI | MR
[2] Bojowald M., Kastrup H. A., “Symmetry reduction for quantized diffeomorphism-invariant theories of connections”, Classical Quantum Gravity, 17 (2000), 3009–3043, arXiv: hep-th/9907042 | DOI | MR | Zbl
[3] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl
[4] Fleischhack Ch., Loop quantization and symmetry: configuration spaces, arXiv: 1010.0449
[5] Hanusch M., Invariant connections in loop quantum gravity, arXiv: 1307.5303
[6] Harnad J., Shnider S., Vinet L., “Group actions on principal bundles and invariance conditions for gauge fields”, J. Math. Phys., 21 (1980), 2719–2724 | DOI | MR | Zbl
[7] Rudolph G., Schmidt M., Differential geometry and mathematical physics, v. I, Theoretical and Mathematical Physics, Manifolds, Lie groups and Hamiltonian systems, Springer, Dordrecht, 2013 | DOI | MR | Zbl
[8] Wang H. C., “On invariant connections over a principal fibre bundle”, Nagoya Math. J., 13 (1958), 1–19 | MR | Zbl
[9] Whitney H., “Differentiability of the remainder term in {T}aylor's formula”, Duke Math. J., 10 (1943), 153–158 | DOI | MR | Zbl
[10] Whitney H., “Differentiable even functions”, Duke Math. J., 10 (1943), 159–160 | DOI | MR | Zbl