@article{SIGMA_2014_10_a23,
author = {Hisham Sati},
title = {M-Theory with {Framed} {Corners} and {Tertiary} {Index} {Invariants}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/}
}
Hisham Sati. M-Theory with Framed Corners and Tertiary Index Invariants. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/
[1] Aganagic M., Bouchard V., Klemm A., “Topological strings and (almost) modular forms”, Comm. Math. Phys., 277 (2008), 771–819, arXiv: hep-th/0607100 | DOI | MR | Zbl
[2] Ando M., Hopkins M. J., Strickland N. P., “Elliptic spectra, the {W}itten genus and the theorem of the cube”, Invent. Math., 146 (2001), 595–687 | DOI | MR | Zbl
[3] Astey L., Gitler S., Micha E., Pastor G., “Parallelizability of complex projective {S}tiefel manifolds”, Proc. Amer. Math. Soc., 128 (2000), 1527–1530 | DOI | MR | Zbl
[4] Astey L., Guest M. A., Pastor G., “Lie groups as framed boundaries”, Osaka J. Math., 25 (1988), 891–907 | MR | Zbl
[5] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and {R}iemannian geometry, {I}”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl
[6] Atiyah M. F., Singer I. M., “Index theory for skew-adjoint {F}redholm operators”, Inst. Hautes Études Sci. Publ. Math., 1969, 5–26 | DOI | MR | Zbl
[7] Atiyah M. F., Singer I. M., “The index of elliptic operators, {IV}”, Ann. of Math., 93 (1971), 119–138 | DOI | MR | Zbl
[8] Atiyah M. F., Singer I. M., “The index of elliptic operators, {V}”, Ann. of Math., 93 (1971), 139–149 | DOI | MR | Zbl
[9] Atiyah M. F., Smith L., “Compact {L}ie groups and the stable homotopy of spheres”, Topology, 13 (1974), 135–142 | DOI | MR | Zbl
[10] Becker J. C., Schultz R. E., “Fixed-point indices and left invariant framings”, Geometric Applications of Homotopy Theory, {P}roc. {C}onf. ({E}vanston, {I}ll., 1977), v. I, Lecture Notes in Math., 657, Springer, Berlin, 1978, 1–31 | DOI | MR
[11] Becker K., Becker M., Dasgupta K., Green P. S., Sharpe E., “Compactifications of heterotic strings of non-{K}ähler complex manifolds, {II}”, Nuclear Phys. B, 678 (2004), 19–100, arXiv: hep-th/0310058 | DOI | MR | Zbl
[12] Belov D., Moore G. W., Holographic action for the self-dual field, arXiv: hep-th/0605038
[13] Bismut J. M., Cheeger J., “Families index for manifolds with boundary, superconnections, and cones. {I}: {F}amilies of manifolds with boundary and {D}irac operators”, J. Funct. Anal., 89 (1990), 313–363 | DOI | MR | Zbl
[14] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces, {III}”, Amer. J. Math., 82 (1960), 491–504 | DOI | MR | Zbl
[15] Bouwknegt P., Evslin J., Jurčo B., Mathai V., Sati H., “Flux compactifications on projective spaces and the {$S$}-duality puzzle”, Adv. Theor. Math. Phys., 10 (2006), 345–394, arXiv: hep-th/0501110 | DOI | MR | Zbl
[16] Brasselet J. P., Seade J., Suwa T., Vector fields on singular varieties, Lecture Notes in Math., 1987, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
[17] Bredon G. E., Kosiński A., “Vector fields on {$\pi $}-manifolds”, Ann. of Math., 84 (1966), 85–90 | DOI | MR | Zbl
[18] Bunke U., Naumann N., Secondary invariants for String bordism and tmf, arXiv: 0912.4875
[19] Bunke U., Naumann N., “The {$f$}-invariant and index theory”, Manuscripta Math., 132 (2010), 365–397, arXiv: 0808.0257 | DOI | MR | Zbl
[20] Čadek M., Crabb M., “{$G$}-structures on spheres”, Proc. London Math. Soc., 93 (2006), 791–816, arXiv: math.KT/0510149 | DOI | MR
[21] Diaconescu E., Moore G., Freed D. S., “The {M}-theory 3-form and {$E_8$} gauge theory”, Elliptic Cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge Univ. Press, Cambridge, 2007, 44–88, arXiv: hep-th/0312069 | DOI | MR | Zbl
[22] Diaconescu E., Moore G., Witten E., “$E_8$ gauge theory, and a derivation of K-Theory from M-Theory”, Adv. Theor. Math. Phys., 6 (2002), 1031–1134, arXiv: hep-th/0005090 | MR
[23] Distler J., Sharpe E., “Heterotic compactifications with principal bundles for general groups and general levels”, Adv. Theor. Math. Phys., 14 (2010), 335–397, arXiv: hep-th/0701244 | DOI | MR | Zbl
[24] Duff M.J., Liu J. T., Minasian R., “Eleven-dimensional origin of string/string duality: a one-loop test”, Nuclear Phys. B, 452 (1995), 261–282, arXiv: hep-th/9506126 | DOI | MR | Zbl
[25] Evslin J., Sati H., Can {D}-branes wrap nonrepresentable cycles?, J. High Energy Phys., 2006:10 (2006), 050, 10 pp., arXiv: hep-th/0607045 | DOI | MR
[26] Figueroa-O'Farrill J., Kawano T., Yamaguchi S., “Parallelisable heterotic backgrounds”, J. High Energy Phys., 2003:10 (2003), 012, 22 pp., arXiv: hep-th/0308141 | DOI | MR
[27] Freed D. S., “Dirac charge quantization and generalized differential cohomology”, Surveys in Differential Geometry, VII, Int. Press, Somerville, MA, 2000, 129–194, arXiv: hep-th/0011220 | MR | Zbl
[28] Galvez Carrillo M. I., Modular invariants for manifolds with boundary, Ph.D. Thesis, Universitat Autonoma de Barcelona, 2001
[29] Gran U., Papadopoulos G., Roest D., “Supersymmetric heterotic string backgrounds”, Phys. Lett. B, 656 (2007), 119–126, arXiv: 0706.4407 | DOI | MR | Zbl
[30] Gran U., Papadopoulos G., Sloane P., Roest D., “Geometry of all supersymmetric type {I} backgrounds”, J. High Energy Phys., 2007:8 (2007), 074, 75 pp., arXiv: hep-th/0703143 | DOI | MR
[31] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg Sohn, Braunschweig, 1992 | DOI | MR | Zbl
[32] Hopkins M. J., Singer I. M., “Quadratic functions in geometry, topology, and {M}-theory”, J. Differential Geom., 70 (2005), 329–452, arXiv: math.AT/0211216 | MR | Zbl
[33] Kamata M., Minami H., “The special orthogonal groups {${\rm SO}(2n)$} as framed boundaries”, Kyushu J. Math., 54 (2000), 147–153 | DOI | MR | Zbl
[34] Kawano T., Yamaguchi S., “Dilatonic parallelizable NS-NS backgrounds”, Phys. Lett. B, 568 (2003), 78–82, arXiv: hep-th/0306038 | DOI | MR | Zbl
[35] Kervaire M., “Courbure intégrale généralisée et homotopie”, Math. Ann., 131 (1956), 219–252 | DOI | MR | Zbl
[36] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres, {I}”, Ann. of Math., 77 (1963), 504–537 | DOI | MR | Zbl
[37] Killingback T. P., “Global anomalies, string theory and spacetime topology”, Classical Quantum Gravity, 5 (1988), 1169–1185 | DOI | MR | Zbl
[38] Knapp K., “Rank and {A}dams filtration of a {L}ie group”, Topology, 17 (1978), 41–52 | DOI | MR | Zbl
[39] Kriz I., Sati H., “M-theory, type {IIA} superstrings, and elliptic cohomology”, Adv. Theor. Math. Phys., 8 (2004), 345–394, arXiv: hep-th/0404013 | DOI | MR | Zbl
[40] Kriz I., Sati H., “Type {II} string theory and modularity”, J. High Energy Phys., 2005:8 (2005), 038, 30 pp., arXiv: hep-th/0501060 | DOI | MR
[41] Kriz I., Sati H., “Type {IIB} string theory, {$S$}-duality, and generalized cohomology”, Nuclear Phys. B, 715 (2005), 639–664, arXiv: hep-th/0410293 | DOI | MR | Zbl
[42] Laures G., “On cobordism of manifolds with corners”, Trans. Amer. Math. Soc., 352 (2000), 5667–5688 | DOI | MR | Zbl
[43] Laures G., “{$K(1)$}-local topological modular forms”, Invent. Math., 157 (2004), 371–403 | DOI | MR | Zbl
[44] Lerche W., Nilsson B. E. W., Schellekens A. N., Warner N. P., “Anomaly cancelling terms from the elliptic genus”, Nuclear Phys. B, 299 (1988), 91–116 | DOI | MR
[45] Löffler P., Smith L., “Line bundles over framed manifolds”, Math. Z., 138 (1974), 35–52 | DOI | MR
[46] Mahowald M., Rezk C., “Topological modular forms of level 3”, Pure Appl. Math. Q., 5 (2009), 853–872, arXiv: 0812.2009 | DOI | MR | Zbl
[47] Maldacena J., Moore G., Seiberg N., “D-brane instantons and {$K$}-theory charges”, J. High Energy Phys., 2001:11 (2001), 062, 42 pp., arXiv: hep-th/0108100 | DOI | MR
[48] Mathai V., Sati H., “Some relations between twisted {$K$}-theory and {$E_8$} gauge theory”, J. High Energy Phys., 2004:3 (2004), 016, 22 pp., arXiv: hep-th/0312033 | DOI | MR
[49] Melrose R. B., Piazza P., “An index theorem for families of {D}irac operators on odd-dimensional manifolds with boundary”, J. Differential Geom., 46 (1997), 287–334 | MR | Zbl
[50] Minami H., “Stiefel manifolds as framed boundaries”, Osaka J. Math., 27 (1990), 185–189 | MR | Zbl
[51] Minami H., “Remarks on framed bordism classes of classical {L}ie groups”, Publ. Res. Inst. Math. Sci., 43 (2007), 461–470 | DOI | MR | Zbl
[52] Moore G., Saulina N., “{$T$}-duality, and the {$K$}-theoretic partition function of type {IIA} superstring theory”, Nuclear Phys. B, 670 (2003), 27–89, arXiv: hep-th/0206092 | DOI | MR | Zbl
[53] Pittie H. V., Smith L., “Generalized flag manifolds as framed boundaries”, Math. Z., 142 (1975), 191–193 | DOI | MR | Zbl
[54] Sadri D., Sheikh-Jabbari M. M., “String theory on parallelizable pp-waves”, J. High Energy Phys., 2003:6 (2003), 005, 35 pp., arXiv: hep-th/0304169 | DOI | MR
[55] Sati H., “The elliptic curves in gauge theory, string theory, and cohomology”, J. High Energy Phys., 2006:3 (2006), 096, 20 pp., arXiv: hep-th/0511087 | DOI | MR | Zbl
[56] Sati H., “An approach to anomalies in {M}-theory via {$K$}{S}pin”, J. Geom. Phys., 58 (2008), 387–401, arXiv: 0705.3484 | DOI | MR | Zbl
[57] Sati H., “{${\mathbb{OP}}^2$} bundles in {M}-theory”, Commun. Number Theory Phys., 3 (2009), 495–530, arXiv: 0807.4899 | DOI | MR | Zbl
[58] Sati H., “The loop group of {$E_8$} and targets for spacetime”, Modern Phys. Lett. A, 24 (2009), 25–40, arXiv: hep-th/0701231 | DOI | MR | Zbl
[59] Sati H., “{$E_8$} gauge theory and gerbes in string theory”, Adv. Theor. Math. Phys., 14 (2010), 399–437, arXiv: hep-th/0608190 | DOI | MR | Zbl
[60] Sati H., “Geometric and topological structures related to {M}-branes”, Superstrings, Geometry, Topology, and {$C^\ast$}-Algebras, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, 2010, 181–236, arXiv: 1001.5020 | DOI | MR | Zbl
[61] Sati H., “Anomalies of {$E_8$} gauge theory on string manifolds”, Internat. J. Modern Phys. A, 26 (2011), 2177–2197, arXiv: 0807.4940 | DOI | MR | Zbl
[62] Sati H., “Constraints on heterotic {M}-theory from {$s$}-cobordism”, Nuclear Phys. B, 853 (2011), 739–759, arXiv: 1102.1171 | DOI | MR | Zbl
[63] Sati H., “Corners in {M}-theory”, J. Phys. A: Math. Theor., 44 (2011), 255402, 21 pp., arXiv: 1101.2793 | DOI | MR | Zbl
[64] Sati H., “M-theory, the signature theorem, and geometric invariants”, Phys. Rev. D, 83 (2011), 126010, 10 pp., arXiv: 1012.1300 | DOI | MR
[65] Sati H., On global anomalies in type IIB string theory, arXiv: 1109.4385
[66] Sati H., Topological aspects of the partition function of the NS5-brane, arXiv: 1109.4834
[67] Sati H., “Duality and cohomology in {$M$}-theory with boundary”, J. Geom. Phys., 62 (2012), 1284–1297, arXiv: 1012.4495 | DOI | MR | Zbl
[68] Sati H., “Geometry of {S}pin and {S}pin{$^c$} structures in the {M}-theory partition function”, Rev. Math. Phys., 24 (2012), 1250005, 112 pp., arXiv: 1005.1700 | DOI | MR | Zbl
[69] Sati H., Framed M-branes, corners, and topological invariants, arXiv: 1310.1060
[70] Sati H., String theory as local pre-quantum field theory, in preparation
[71] Sati H., Schreiber U., Stasheff J., “Fivebrane structures”, Rev. Math. Phys., 21 (2009), 1197–1240, arXiv: 0805.0564 | DOI | MR | Zbl
[72] Sati H., Schreiber U., Stasheff J., “Twisted differential string and fivebrane structures”, Comm. Math. Phys., 315 (2012), 169–213, arXiv: 0910.4001 | DOI | MR | Zbl
[73] Sati H., Westerland C., Twisted Morava K-theory and E-theory, arXiv: 1109.3867
[74] Schellekens A. N., Warner N. P., “Anomalies, characters and strings”, Nuclear Phys. B, 287 (1987), 317–361 | DOI | MR
[75] Singhof W., “Parallelizability of homogeneous spaces, {I}”, Math. Ann., 260 (1982), 101–116 | DOI | MR | Zbl
[76] Singhof W., “The {$d$}-invariant of compact nilmanifolds”, Invent. Math., 78 (1984), 113–115 | DOI | MR | Zbl
[77] Singhof W., Wemmer D., “Parallelizability of homogeneous spaces, {II}”, Math. Ann., 274 (1986), 157–176 | DOI | MR | Zbl
[78] Smith L., “Framings of sphere bundles over spheres, the plumbing pairing, and the framed bordism classes of rank two simple {L}ie groups”, Topology, 13 (1974), 401–415 | DOI | MR | Zbl
[79] Spindel P., Sevrin A., Troost W., Van Proeyen A., “Complex structures on parallelised group manifolds and supersymmetric {$\sigma$}-models”, Phys. Lett. B, 206 (1988), 71–74 | DOI | MR
[80] Steer B., “Orbits and the homotopy class of a compactification of a classical map”, Topology, 15 (1976), 383–393 | DOI | MR | Zbl
[81] Stong R. E., Notes on cobordism theory, Mathematical Notes, Princeton University Press, Princeton, N.J., 1968 | MR | Zbl
[82] Thomas E., “Cross-sections of stably equivalent vector bundles”, Quart. J. Math. Oxford Ser. (2), 17 (1966), 53–57 | DOI | MR | Zbl
[83] von Bodecker H., On the geometry of the $f$-invariant, arXiv: 0808.0428
[84] von Bodecker H., On the $f$-invariant of products, arXiv: 0909.3968
[85] Witten E., “The index of the {D}irac operator in loop space”, Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), Lecture Notes in Math., 1326, Springer, Berlin, 1988, 161–181 | DOI | MR
[86] Witten E., J. Geom. Phys., 22 (1997), On flux quantization in {$M$}-theory and the effective action, arXiv: hep-th/9609122 | DOI | MR
[87] Wood R. M. W., “Framing the exceptional {L}ie group {$G_{2}$}”, Topology, 15 (1976), 303–320 | DOI | MR | Zbl