M-Theory with Framed Corners and Tertiary Index Invariants
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The study of the partition function in M-theory involves the use of index theory on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary, this is given by secondary index invariants such as the Atiyah–Patodi–Singer eta-invariant, the Chern–Simons invariant, or the Adams $e$-invariant. If the eleven-dimensional manifold itself has a boundary, the resulting ten-dimensional manifold can be viewed as a codimension two corner. The partition function in this context has been studied by the author in relation to index theory for manifolds with corners, essentially on the product of two intervals. In this paper, we focus on the case of framed manifolds (which are automatically Spin) and provide a formulation of the refined partition function using a tertiary index invariant, namely the $f$-invariant introduced by Laures within elliptic cohomology. We describe the context globally, connecting the various spaces and theories around M-theory, and providing a physical realization and interpretation of some ingredients appearing in the constructions due to Bunke–Naumann and Bodecker. The formulation leads to a natural interpretation of anomalies using corners and uncovers some resulting constraints in the heterotic corner. The analysis for type IIA leads to a physical identification of various components of eta-forms appearing in the formula for the phase of the partition function.
Keywords: anomalies; manifolds with corners; tertiary index invariants; M-theory; elliptic genera; partition functions; eta-forms.
@article{SIGMA_2014_10_a23,
     author = {Hisham Sati},
     title = {M-Theory with {Framed} {Corners} and {Tertiary} {Index} {Invariants}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/}
}
TY  - JOUR
AU  - Hisham Sati
TI  - M-Theory with Framed Corners and Tertiary Index Invariants
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/
LA  - en
ID  - SIGMA_2014_10_a23
ER  - 
%0 Journal Article
%A Hisham Sati
%T M-Theory with Framed Corners and Tertiary Index Invariants
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/
%G en
%F SIGMA_2014_10_a23
Hisham Sati. M-Theory with Framed Corners and Tertiary Index Invariants. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a23/

[1] Aganagic M., Bouchard V., Klemm A., “Topological strings and (almost) modular forms”, Comm. Math. Phys., 277 (2008), 771–819, arXiv: hep-th/0607100 | DOI | MR | Zbl

[2] Ando M., Hopkins M. J., Strickland N. P., “Elliptic spectra, the {W}itten genus and the theorem of the cube”, Invent. Math., 146 (2001), 595–687 | DOI | MR | Zbl

[3] Astey L., Gitler S., Micha E., Pastor G., “Parallelizability of complex projective {S}tiefel manifolds”, Proc. Amer. Math. Soc., 128 (2000), 1527–1530 | DOI | MR | Zbl

[4] Astey L., Guest M. A., Pastor G., “Lie groups as framed boundaries”, Osaka J. Math., 25 (1988), 891–907 | MR | Zbl

[5] Atiyah M. F., Patodi V. K., Singer I. M., “Spectral asymmetry and {R}iemannian geometry, {I}”, Math. Proc. Cambridge Philos. Soc., 77 (1975), 43–69 | DOI | MR | Zbl

[6] Atiyah M. F., Singer I. M., “Index theory for skew-adjoint {F}redholm operators”, Inst. Hautes Études Sci. Publ. Math., 1969, 5–26 | DOI | MR | Zbl

[7] Atiyah M. F., Singer I. M., “The index of elliptic operators, {IV}”, Ann. of Math., 93 (1971), 119–138 | DOI | MR | Zbl

[8] Atiyah M. F., Singer I. M., “The index of elliptic operators, {V}”, Ann. of Math., 93 (1971), 139–149 | DOI | MR | Zbl

[9] Atiyah M. F., Smith L., “Compact {L}ie groups and the stable homotopy of spheres”, Topology, 13 (1974), 135–142 | DOI | MR | Zbl

[10] Becker J. C., Schultz R. E., “Fixed-point indices and left invariant framings”, Geometric Applications of Homotopy Theory, {P}roc. {C}onf. ({E}vanston, {I}ll., 1977), v. I, Lecture Notes in Math., 657, Springer, Berlin, 1978, 1–31 | DOI | MR

[11] Becker K., Becker M., Dasgupta K., Green P. S., Sharpe E., “Compactifications of heterotic strings of non-{K}ähler complex manifolds, {II}”, Nuclear Phys. B, 678 (2004), 19–100, arXiv: hep-th/0310058 | DOI | MR | Zbl

[12] Belov D., Moore G. W., Holographic action for the self-dual field, arXiv: hep-th/0605038

[13] Bismut J. M., Cheeger J., “Families index for manifolds with boundary, superconnections, and cones. {I}: {F}amilies of manifolds with boundary and {D}irac operators”, J. Funct. Anal., 89 (1990), 313–363 | DOI | MR | Zbl

[14] Borel A., Hirzebruch F., “Characteristic classes and homogeneous spaces, {III}”, Amer. J. Math., 82 (1960), 491–504 | DOI | MR | Zbl

[15] Bouwknegt P., Evslin J., Jurčo B., Mathai V., Sati H., “Flux compactifications on projective spaces and the {$S$}-duality puzzle”, Adv. Theor. Math. Phys., 10 (2006), 345–394, arXiv: hep-th/0501110 | DOI | MR | Zbl

[16] Brasselet J. P., Seade J., Suwa T., Vector fields on singular varieties, Lecture Notes in Math., 1987, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[17] Bredon G. E., Kosiński A., “Vector fields on {$\pi $}-manifolds”, Ann. of Math., 84 (1966), 85–90 | DOI | MR | Zbl

[18] Bunke U., Naumann N., Secondary invariants for String bordism and tmf, arXiv: 0912.4875

[19] Bunke U., Naumann N., “The {$f$}-invariant and index theory”, Manuscripta Math., 132 (2010), 365–397, arXiv: 0808.0257 | DOI | MR | Zbl

[20] Čadek M., Crabb M., “{$G$}-structures on spheres”, Proc. London Math. Soc., 93 (2006), 791–816, arXiv: math.KT/0510149 | DOI | MR

[21] Diaconescu E., Moore G., Freed D. S., “The {M}-theory 3-form and {$E_8$} gauge theory”, Elliptic Cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge Univ. Press, Cambridge, 2007, 44–88, arXiv: hep-th/0312069 | DOI | MR | Zbl

[22] Diaconescu E., Moore G., Witten E., “$E_8$ gauge theory, and a derivation of K-Theory from M-Theory”, Adv. Theor. Math. Phys., 6 (2002), 1031–1134, arXiv: hep-th/0005090 | MR

[23] Distler J., Sharpe E., “Heterotic compactifications with principal bundles for general groups and general levels”, Adv. Theor. Math. Phys., 14 (2010), 335–397, arXiv: hep-th/0701244 | DOI | MR | Zbl

[24] Duff M.J., Liu J. T., Minasian R., “Eleven-dimensional origin of string/string duality: a one-loop test”, Nuclear Phys. B, 452 (1995), 261–282, arXiv: hep-th/9506126 | DOI | MR | Zbl

[25] Evslin J., Sati H., Can {D}-branes wrap nonrepresentable cycles?, J. High Energy Phys., 2006:10 (2006), 050, 10 pp., arXiv: hep-th/0607045 | DOI | MR

[26] Figueroa-O'Farrill J., Kawano T., Yamaguchi S., “Parallelisable heterotic backgrounds”, J. High Energy Phys., 2003:10 (2003), 012, 22 pp., arXiv: hep-th/0308141 | DOI | MR

[27] Freed D. S., “Dirac charge quantization and generalized differential cohomology”, Surveys in Differential Geometry, VII, Int. Press, Somerville, MA, 2000, 129–194, arXiv: hep-th/0011220 | MR | Zbl

[28] Galvez Carrillo M. I., Modular invariants for manifolds with boundary, Ph.D. Thesis, Universitat Autonoma de Barcelona, 2001

[29] Gran U., Papadopoulos G., Roest D., “Supersymmetric heterotic string backgrounds”, Phys. Lett. B, 656 (2007), 119–126, arXiv: 0706.4407 | DOI | MR | Zbl

[30] Gran U., Papadopoulos G., Sloane P., Roest D., “Geometry of all supersymmetric type {I} backgrounds”, J. High Energy Phys., 2007:8 (2007), 074, 75 pp., arXiv: hep-th/0703143 | DOI | MR

[31] Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg Sohn, Braunschweig, 1992 | DOI | MR | Zbl

[32] Hopkins M. J., Singer I. M., “Quadratic functions in geometry, topology, and {M}-theory”, J. Differential Geom., 70 (2005), 329–452, arXiv: math.AT/0211216 | MR | Zbl

[33] Kamata M., Minami H., “The special orthogonal groups {${\rm SO}(2n)$} as framed boundaries”, Kyushu J. Math., 54 (2000), 147–153 | DOI | MR | Zbl

[34] Kawano T., Yamaguchi S., “Dilatonic parallelizable NS-NS backgrounds”, Phys. Lett. B, 568 (2003), 78–82, arXiv: hep-th/0306038 | DOI | MR | Zbl

[35] Kervaire M., “Courbure intégrale généralisée et homotopie”, Math. Ann., 131 (1956), 219–252 | DOI | MR | Zbl

[36] Kervaire M. A., Milnor J. W., “Groups of homotopy spheres, {I}”, Ann. of Math., 77 (1963), 504–537 | DOI | MR | Zbl

[37] Killingback T. P., “Global anomalies, string theory and spacetime topology”, Classical Quantum Gravity, 5 (1988), 1169–1185 | DOI | MR | Zbl

[38] Knapp K., “Rank and {A}dams filtration of a {L}ie group”, Topology, 17 (1978), 41–52 | DOI | MR | Zbl

[39] Kriz I., Sati H., “M-theory, type {IIA} superstrings, and elliptic cohomology”, Adv. Theor. Math. Phys., 8 (2004), 345–394, arXiv: hep-th/0404013 | DOI | MR | Zbl

[40] Kriz I., Sati H., “Type {II} string theory and modularity”, J. High Energy Phys., 2005:8 (2005), 038, 30 pp., arXiv: hep-th/0501060 | DOI | MR

[41] Kriz I., Sati H., “Type {IIB} string theory, {$S$}-duality, and generalized cohomology”, Nuclear Phys. B, 715 (2005), 639–664, arXiv: hep-th/0410293 | DOI | MR | Zbl

[42] Laures G., “On cobordism of manifolds with corners”, Trans. Amer. Math. Soc., 352 (2000), 5667–5688 | DOI | MR | Zbl

[43] Laures G., “{$K(1)$}-local topological modular forms”, Invent. Math., 157 (2004), 371–403 | DOI | MR | Zbl

[44] Lerche W., Nilsson B. E. W., Schellekens A. N., Warner N. P., “Anomaly cancelling terms from the elliptic genus”, Nuclear Phys. B, 299 (1988), 91–116 | DOI | MR

[45] Löffler P., Smith L., “Line bundles over framed manifolds”, Math. Z., 138 (1974), 35–52 | DOI | MR

[46] Mahowald M., Rezk C., “Topological modular forms of level 3”, Pure Appl. Math. Q., 5 (2009), 853–872, arXiv: 0812.2009 | DOI | MR | Zbl

[47] Maldacena J., Moore G., Seiberg N., “D-brane instantons and {$K$}-theory charges”, J. High Energy Phys., 2001:11 (2001), 062, 42 pp., arXiv: hep-th/0108100 | DOI | MR

[48] Mathai V., Sati H., “Some relations between twisted {$K$}-theory and {$E_8$} gauge theory”, J. High Energy Phys., 2004:3 (2004), 016, 22 pp., arXiv: hep-th/0312033 | DOI | MR

[49] Melrose R. B., Piazza P., “An index theorem for families of {D}irac operators on odd-dimensional manifolds with boundary”, J. Differential Geom., 46 (1997), 287–334 | MR | Zbl

[50] Minami H., “Stiefel manifolds as framed boundaries”, Osaka J. Math., 27 (1990), 185–189 | MR | Zbl

[51] Minami H., “Remarks on framed bordism classes of classical {L}ie groups”, Publ. Res. Inst. Math. Sci., 43 (2007), 461–470 | DOI | MR | Zbl

[52] Moore G., Saulina N., “{$T$}-duality, and the {$K$}-theoretic partition function of type {IIA} superstring theory”, Nuclear Phys. B, 670 (2003), 27–89, arXiv: hep-th/0206092 | DOI | MR | Zbl

[53] Pittie H. V., Smith L., “Generalized flag manifolds as framed boundaries”, Math. Z., 142 (1975), 191–193 | DOI | MR | Zbl

[54] Sadri D., Sheikh-Jabbari M. M., “String theory on parallelizable pp-waves”, J. High Energy Phys., 2003:6 (2003), 005, 35 pp., arXiv: hep-th/0304169 | DOI | MR

[55] Sati H., “The elliptic curves in gauge theory, string theory, and cohomology”, J. High Energy Phys., 2006:3 (2006), 096, 20 pp., arXiv: hep-th/0511087 | DOI | MR | Zbl

[56] Sati H., “An approach to anomalies in {M}-theory via {$K$}{S}pin”, J. Geom. Phys., 58 (2008), 387–401, arXiv: 0705.3484 | DOI | MR | Zbl

[57] Sati H., “{${\mathbb{OP}}^2$} bundles in {M}-theory”, Commun. Number Theory Phys., 3 (2009), 495–530, arXiv: 0807.4899 | DOI | MR | Zbl

[58] Sati H., “The loop group of {$E_8$} and targets for spacetime”, Modern Phys. Lett. A, 24 (2009), 25–40, arXiv: hep-th/0701231 | DOI | MR | Zbl

[59] Sati H., “{$E_8$} gauge theory and gerbes in string theory”, Adv. Theor. Math. Phys., 14 (2010), 399–437, arXiv: hep-th/0608190 | DOI | MR | Zbl

[60] Sati H., “Geometric and topological structures related to {M}-branes”, Superstrings, Geometry, Topology, and {$C^\ast$}-Algebras, Proc. Sympos. Pure Math., 81, Amer. Math. Soc., Providence, RI, 2010, 181–236, arXiv: 1001.5020 | DOI | MR | Zbl

[61] Sati H., “Anomalies of {$E_8$} gauge theory on string manifolds”, Internat. J. Modern Phys. A, 26 (2011), 2177–2197, arXiv: 0807.4940 | DOI | MR | Zbl

[62] Sati H., “Constraints on heterotic {M}-theory from {$s$}-cobordism”, Nuclear Phys. B, 853 (2011), 739–759, arXiv: 1102.1171 | DOI | MR | Zbl

[63] Sati H., “Corners in {M}-theory”, J. Phys. A: Math. Theor., 44 (2011), 255402, 21 pp., arXiv: 1101.2793 | DOI | MR | Zbl

[64] Sati H., “M-theory, the signature theorem, and geometric invariants”, Phys. Rev. D, 83 (2011), 126010, 10 pp., arXiv: 1012.1300 | DOI | MR

[65] Sati H., On global anomalies in type IIB string theory, arXiv: 1109.4385

[66] Sati H., Topological aspects of the partition function of the NS5-brane, arXiv: 1109.4834

[67] Sati H., “Duality and cohomology in {$M$}-theory with boundary”, J. Geom. Phys., 62 (2012), 1284–1297, arXiv: 1012.4495 | DOI | MR | Zbl

[68] Sati H., “Geometry of {S}pin and {S}pin{$^c$} structures in the {M}-theory partition function”, Rev. Math. Phys., 24 (2012), 1250005, 112 pp., arXiv: 1005.1700 | DOI | MR | Zbl

[69] Sati H., Framed M-branes, corners, and topological invariants, arXiv: 1310.1060

[70] Sati H., String theory as local pre-quantum field theory, in preparation

[71] Sati H., Schreiber U., Stasheff J., “Fivebrane structures”, Rev. Math. Phys., 21 (2009), 1197–1240, arXiv: 0805.0564 | DOI | MR | Zbl

[72] Sati H., Schreiber U., Stasheff J., “Twisted differential string and fivebrane structures”, Comm. Math. Phys., 315 (2012), 169–213, arXiv: 0910.4001 | DOI | MR | Zbl

[73] Sati H., Westerland C., Twisted Morava K-theory and E-theory, arXiv: 1109.3867

[74] Schellekens A. N., Warner N. P., “Anomalies, characters and strings”, Nuclear Phys. B, 287 (1987), 317–361 | DOI | MR

[75] Singhof W., “Parallelizability of homogeneous spaces, {I}”, Math. Ann., 260 (1982), 101–116 | DOI | MR | Zbl

[76] Singhof W., “The {$d$}-invariant of compact nilmanifolds”, Invent. Math., 78 (1984), 113–115 | DOI | MR | Zbl

[77] Singhof W., Wemmer D., “Parallelizability of homogeneous spaces, {II}”, Math. Ann., 274 (1986), 157–176 | DOI | MR | Zbl

[78] Smith L., “Framings of sphere bundles over spheres, the plumbing pairing, and the framed bordism classes of rank two simple {L}ie groups”, Topology, 13 (1974), 401–415 | DOI | MR | Zbl

[79] Spindel P., Sevrin A., Troost W., Van Proeyen A., “Complex structures on parallelised group manifolds and supersymmetric {$\sigma$}-models”, Phys. Lett. B, 206 (1988), 71–74 | DOI | MR

[80] Steer B., “Orbits and the homotopy class of a compactification of a classical map”, Topology, 15 (1976), 383–393 | DOI | MR | Zbl

[81] Stong R. E., Notes on cobordism theory, Mathematical Notes, Princeton University Press, Princeton, N.J., 1968 | MR | Zbl

[82] Thomas E., “Cross-sections of stably equivalent vector bundles”, Quart. J. Math. Oxford Ser. (2), 17 (1966), 53–57 | DOI | MR | Zbl

[83] von Bodecker H., On the geometry of the $f$-invariant, arXiv: 0808.0428

[84] von Bodecker H., On the $f$-invariant of products, arXiv: 0909.3968

[85] Witten E., “The index of the {D}irac operator in loop space”, Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986), Lecture Notes in Math., 1326, Springer, Berlin, 1988, 161–181 | DOI | MR

[86] Witten E., J. Geom. Phys., 22 (1997), On flux quantization in {$M$}-theory and the effective action, arXiv: hep-th/9609122 | DOI | MR

[87] Wood R. M. W., “Framing the exceptional {L}ie group {$G_{2}$}”, Topology, 15 (1976), 303–320 | DOI | MR | Zbl