The Real $K$-Theory of Compact Lie Groups
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a compact, connected, and simply-connected Lie group, equipped with a Lie group involution $\sigma_G$ and viewed as a $G$-space with the conjugation action. In this paper, we present a description of the ring structure of the (equivariant) $KR$-theory of $(G, \sigma_G)$ by drawing on previous results on the module structure of the $KR$-theory and the ring structure of the equivariant $K$-theory.
Keywords: $KR$-theory; compact Lie groups; Real representations; Real equivariant formality.
@article{SIGMA_2014_10_a21,
     author = {Chi-Kwong Fok},
     title = {The {Real} $K${-Theory} of {Compact} {Lie} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a21/}
}
TY  - JOUR
AU  - Chi-Kwong Fok
TI  - The Real $K$-Theory of Compact Lie Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a21/
LA  - en
ID  - SIGMA_2014_10_a21
ER  - 
%0 Journal Article
%A Chi-Kwong Fok
%T The Real $K$-Theory of Compact Lie Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a21/
%G en
%F SIGMA_2014_10_a21
Chi-Kwong Fok. The Real $K$-Theory of Compact Lie Groups. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a21/

[1] Atiyah M. F., “On the {$K$}-theory of compact {L}ie groups”, Topology, 4 (1965), 95–99 | DOI | MR | Zbl

[2] Atiyah M. F., “{$K$}-theory and reality”, Quart. J. Math. Oxford Ser. (2), 17 (1966), 367–386 | DOI | MR | Zbl

[3] Atiyah M. F., {$K$}-theory, W.A. Benjamin, Inc., New York–Amsterdam, 1967 | MR | Zbl

[4] Atiyah M. F., “Bott periodicity and the index of elliptic operators”, Quart. J. Math. Oxford Ser. (2), 19 (1968), 113–140 | DOI | MR | Zbl

[5] Atiyah M. F., Segal G. B., “Equivariant {$K$}-theory and completion”, J. Differential Geometry, 3 (1969), 1–18 | MR | Zbl

[6] Bourbaki N., Lie groups and {L}ie algebras, {C}hapters 7–9, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2005 | MR | Zbl

[7] Bousfield A. K., “On the 2-adic {$K$}-localizations of {$H$}-spaces”, Homology, Homotopy Appl., 9 (2007), 331–366 | DOI | MR | Zbl

[8] Bröcker T., tom Dieck T., Representations of compact {L}ie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1985

[9] Brylinski J. L., Zhang B., “Equivariant {$K$}-theory of compact connected {L}ie groups”, $K$-Theory, 20 (2000), 23–36, arXiv: dg-ga/9710035 | DOI | MR

[10] Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[11] Harada M., Landweber G. D., “Surjectivity for {H}amiltonian {$G$}-spaces in {$K$}-theory”, Trans. Amer. Math. Soc., 359 (2007), 6001–6025, arXiv: math.SG/0503609 | DOI | MR | Zbl

[12] Harada M., Landweber G. D., Sjamaar R., “Divided differences and the {W}eyl character formula in equivariant {$K$}-theory”, Math. Res. Lett., 17 (2010), 507–527, arXiv: 0906.1629 | DOI | MR | Zbl

[13] Hodgkin L., “On the {$K$}-theory of {L}ie groups”, Topology, 6 (1967), 1–36 | DOI | MR | Zbl

[14] Pittie H. V., “Homogeneous vector bundles on homogeneous spaces”, Topology, 11 (1972), 199–203 | DOI | MR | Zbl

[15] Seymour R. M., “The real {$K$}-theory of {L}ie groups and homogeneous spaces”, Quart. J. Math. Oxford Ser. (2), 24 (1973), 7–30 | DOI | MR | Zbl