@article{SIGMA_2014_10_a20,
author = {Yosuke Saito},
title = {Commutative {Families} of the {Elliptic} {Macdonald} {Operator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/}
}
Yosuke Saito. Commutative Families of the Elliptic Macdonald Operator. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/
[1] Ding J., Iohara K., “Generalization of {D}rinfeld quantum affine algebras”, Lett. Math. Phys., 41 (1997), 181–193 | DOI | MR | Zbl
[2] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate {${\mathbb{CP}}^1$} and {M}acdonald polynomials”, J. Math. Phys., 50 (2009), 095215, 42 pp., arXiv: 0904.2291 | DOI | MR | Zbl
[3] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., Kernel function and quantum algebras, arXiv: 1002.2485
[4] Feigin B., Odesskii A., “A family of elliptic algebras”, Int. Math. Res. Not., 1997:11 (1997), 531–539 | DOI | MR | Zbl
[5] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of {R}uijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR | Zbl
[6] Macdonald I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl
[7] Miki K., “A {$(q,\gamma)$} analog of the {$W_{1+\infty}$} algebra”, J. Math. Phys., 48 (2007), 123520, 35 pp. | DOI | MR | Zbl
[8] Saito Y., Elliptic Ding–Iohara algebra and the free field realization of the elliptic Macdonald operator, arXiv: 1301.4912