Commutative Families of the Elliptic Macdonald Operator
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper [J. Math. Phys. 50 (2009), 095215, 42 pages], Feigin, Hashizume, Hoshino, Shiraishi, and Yanagida constructed two families of commuting operators which contain the Macdonald operator (commutative families of the Macdonald operator). They used the Ding–Iohara–Miki algebra and the trigonometric Feigin–Odesskii algebra. In the previous paper [arXiv:1301.4912], the present author constructed the elliptic Ding–Iohara–Miki algebra and the free field realization of the elliptic Macdonald operator. In this paper, we show that by using the elliptic Ding–Iohara–Miki algebra and the elliptic Feigin–Odesskii algebra, we can construct commutative families of the elliptic Macdonald operator. In Appendix, we will show a relation between the elliptic Macdonald operator and its kernel function by the free field realization.
Keywords: elliptic Ding–Iohara–Miki algebra; free field realization; elliptic Macdonald operator.
@article{SIGMA_2014_10_a20,
     author = {Yosuke Saito},
     title = {Commutative {Families} of the {Elliptic} {Macdonald} {Operator}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/}
}
TY  - JOUR
AU  - Yosuke Saito
TI  - Commutative Families of the Elliptic Macdonald Operator
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/
LA  - en
ID  - SIGMA_2014_10_a20
ER  - 
%0 Journal Article
%A Yosuke Saito
%T Commutative Families of the Elliptic Macdonald Operator
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/
%G en
%F SIGMA_2014_10_a20
Yosuke Saito. Commutative Families of the Elliptic Macdonald Operator. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a20/

[1] Ding J., Iohara K., “Generalization of {D}rinfeld quantum affine algebras”, Lett. Math. Phys., 41 (1997), 181–193 | DOI | MR | Zbl

[2] Feigin B., Hashizume K., Hoshino A., Shiraishi J., Yanagida S., “A commutative algebra on degenerate {${\mathbb{CP}}^1$} and {M}acdonald polynomials”, J. Math. Phys., 50 (2009), 095215, 42 pp., arXiv: 0904.2291 | DOI | MR | Zbl

[3] Feigin B., Hoshino A., Shibahara J., Shiraishi J., Yanagida S., Kernel function and quantum algebras, arXiv: 1002.2485

[4] Feigin B., Odesskii A., “A family of elliptic algebras”, Int. Math. Res. Not., 1997:11 (1997), 531–539 | DOI | MR | Zbl

[5] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of {R}uijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR | Zbl

[6] Macdonald I. G., Symmetric functions and {H}all polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl

[7] Miki K., “A {$(q,\gamma)$} analog of the {$W_{1+\infty}$} algebra”, J. Math. Phys., 48 (2007), 123520, 35 pp. | DOI | MR | Zbl

[8] Saito Y., Elliptic Ding–Iohara algebra and the free field realization of the elliptic Macdonald operator, arXiv: 1301.4912