Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study isometric embeddings of non-extremal Reissner–Nordström metric describing a charged black hole. We obtain three new embeddings in the flat ambient space with minimal possible dimension. These embeddings are global, i.e. corresponding surfaces are smooth at all values of radius, including horizons. Each of the given embeddings covers one instance of the regions outside the horizon, one instance between the horizons and one instance inside the internal horizon. The lines of time for these embeddings turn out to be more complicated than circles or hyperbolas.
Keywords: isometric embedding; global embedding Minkowski space; GEMS; Reissner–Nordström metric; charged black hole.
@article{SIGMA_2014_10_a2,
     author = {Sergey A. Paston and Anton A. Sheykin},
     title = {Global {Embedding} of the {Reissner{\textendash}Nordstr\"om} {Metric} in the {Flat} {Ambient} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/}
}
TY  - JOUR
AU  - Sergey A. Paston
AU  - Anton A. Sheykin
TI  - Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/
LA  - en
ID  - SIGMA_2014_10_a2
ER  - 
%0 Journal Article
%A Sergey A. Paston
%A Anton A. Sheykin
%T Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/
%G en
%F SIGMA_2014_10_a2
Sergey A. Paston; Anton A. Sheykin. Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/

[1] Bandos I. A., “String-like description of gravity and possible applications for {F}-theory”, Modern Phys. Lett. A, 12 (1997), 799–810, arXiv: hep-th/9608093 | DOI | MR | Zbl

[2] Banerjee R., Majhi B. R., “A new global embedding approach to study {H}awking and {U}nruh effects”, Phys. Lett. B, 690 (2010), 83–86, arXiv: 1002.0985 | DOI | MR

[3] Chen H. Z., Tian Y., “Note on the generalization of the global embedding Minkowski spacetime approach”, Phys. Rev. D, 71 (2005), 024012, 4 pp., arXiv: gr-qc/0410077 | DOI

[4] Collinson C. D., “Embeddings of the plane-fronted waves and other space-time”, J. Math. Phys., 9 (1968), 403–410 | DOI | Zbl

[5] Deser S., Levin O., “Accelerated detectors and temperature in (anti-) de {S}itter spaces”, Classical Quantum Gravity, 14 (1997), L163–L168, arXiv: gr-qc/9706018 | DOI | MR | Zbl

[6] Deser S., Levin O., “Equivalence of {H}awking and {U}nruh temperatures and entropies through flat space embeddings”, Classical Quantum Gravity, 15 (1998), L85–L87, arXiv: hep-th/9806223 | DOI | MR | Zbl

[7] Deser S., Levin O., “Mapping {H}awking into {U}nruh thermal properties”, Phys. Rev. D, 59 (1999), 064004, 7 pp., arXiv: hep-th/9809159 | DOI | MR

[8] Deser S., Pirani F. A. E., Robinson D. C., “New embedding model of general relativity”, Phys. Rev. D, 14 (1976), 3301–3303 | DOI | MR

[9] Ferraris M., Francaviglia M., “Algebraic isometric embeddings of charged spherically symmetric space-times”, Gen. Relativity Gravitation, 12 (1980), 791–804 | DOI | MR | Zbl

[10] Fronsdal C., “Completion and embedding of the {S}chwarzschild solution”, Phys. Rev., 116 (1959), 778–781 | DOI | MR | Zbl

[11] Fujitani T., Ikeda M., Matsumoto M., “On the imbedding of the {S}chwarzschild space-time, I”, J. Math. Kyoto Univ., 1 (1961), 43–61 | MR | Zbl

[12] Giblin Jr. J. T., Marolf D., Garvey R., “Spacetime embedding diagrams for spherically symmetric black holes”, Gen. Relativity Gravitation, 36 (2004), 83–99, arXiv: gr-qc/0305102 | DOI | MR | Zbl

[13] Goenner H. F., “Local isometric embedding of {R}iemannian manifolds and {E}instein's theory of gravitation”, General Relativity and Gravitation, v. 1, Plenum, New York, 1980, 441–468 | MR

[14] Griffiths J. B., Podolský J., Exact space-times in Einstein's general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009 | MR

[15] Hong S. T., “Complete higher dimensional global embedding structures of various black holes”, Gen. Relativity Gravitation, 36 (2004), 1919–1929, arXiv: gr-qc/0310118 | DOI | MR | Zbl

[16] Jacob U., Piran T., “Embedding the {R}eissner–{N}ordström spacetime in {E}uclidean and {M}inkowski spaces”, Classical Quantum Gravity, 23 (2006), 4035–4045, arXiv: gr-qc/0605104 | DOI | MR | Zbl

[17] Karasik D., Davidson A., “Geodetic brane gravity”, Phys. Rev. D, 67 (2003), 064012, 17 pp., arXiv: gr-qc/0207061 | DOI | MR | Zbl

[18] Kasner E., “Finite representation of the solar gravitational field in flat space of six dimensions”, Amer. J. Math., 43 (1921), 130–133 | DOI | MR | Zbl

[19] Maia M. D., “On the integrability conditions for extended objects”, Classical Quantum Gravity, 6 (1989), 173–183 | DOI | MR | Zbl

[20] Pandey S. N., Kansal I. D., “Impossibility of class one electromagnetic fields”, Math. Proc. Cambridge Phil. Soc., 66 (1969), 153–154 | DOI

[21] Paranjape A., Dadhich N., “Embedding diagrams for the {R}eissner–{N}ordström spacetime”, Gen. Relativity Gravitation, 36 (2004), 1189–1195, arXiv: gr-qc/0307056 | DOI | MR | Zbl

[22] Paston S. A., “Gravity as a field theory in flat space-time”, Theoret. and Math. Phys., 169 (2011), 1611–1619, arXiv: 1111.1104 | DOI | Zbl

[23] Paston S. A., Franke V. A., “Canonical formulation of the embedded theory of gravity that is equivalent to {E}instein's general relativity”, Theoret. and Math. Phys., 153 (2007), 1582–1596, arXiv: 0711.0576 | DOI | MR | Zbl

[24] Paston S. A., Semenova A. N., “Constraint algebra for {R}egge–{T}eitelboim formulation of gravity”, Internat. J. Theoret. Phys., 49 (2010), 2648–2658, arXiv: 1003.0172 | DOI | MR | Zbl

[25] Paston S. A., Sheykin A. A., “Embeddings for the {S}chwarzschild metric: classification and new results”, Classical Quantum Gravity, 29 (2012), 095022, 17 pp., arXiv: 1202.1204 | DOI | MR | Zbl

[26] Paston S. A., Sheykin A. A., “From the embedding theory to general relativity in a result of inflation”, Internat. J. Modern Phys. D, 21 (2012), 1250043, 19 pp., arXiv: 1106.5212 | DOI | MR | Zbl

[27] Pavšič M., “Classical theory of a space-time sheet”, Phys. Lett. A, 107 (1985), 66–70 | DOI | MR | Zbl

[28] Pavšič M., Tapia V., Resource letter on geometrical results for embeddings and branes, arXiv: gr-qc/0010045

[29] Płazowski J., “The imbedding method of finding the maximal extensions of solutions of {E}instein field equations”, Acta Phys. Polon. B, 4 (1973), 49–63 | MR

[30] Regge T., Teitelboim C., “General relativity à la string: a progress report”, Proceedings of the First Marcel Grossmann Meeting on General Relativity (Trieste, Italy, 1975), ed. R. Ruffini, North-Holland Publishing Company, 1977, 77–88

[31] Rosen J., “Embedding of the {S}chwarzschild and {R}eissner–{W}eyl solutions”, Nuovo Cimento, 38 (1965), 631–633 | DOI | MR | Zbl

[32] Rosen J., “Embedding of various relativistic {R}iemannian spaces in pseudo-{E}uclidean spaces”, Rev. Modern Phys., 37 (1965), 204–214 | DOI | MR | Zbl

[33] Santos N. L., Dias Ó. J. C., Lemos J. P. S., “Global embedding of {$D$}-dimensional black holes with a cosmological constant in {M}inkowskian spacetimes: matching between {H}awking temperature and {U}nruh temperature”, Phys. Rev. D, 70 (2004), 124033, 7 pp., arXiv: hep-th/0412076 | DOI | MR

[34] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of {E}instein's field equations, Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[35] Tapia V., “Gravitation à la string”, Classical Quantum Gravity, 6 (1989), L49–L56 | DOI | MR | Zbl