@article{SIGMA_2014_10_a2,
author = {Sergey A. Paston and Anton A. Sheykin},
title = {Global {Embedding} of the {Reissner{\textendash}Nordstr\"om} {Metric} in the {Flat} {Ambient} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/}
}
TY - JOUR AU - Sergey A. Paston AU - Anton A. Sheykin TI - Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/ LA - en ID - SIGMA_2014_10_a2 ER -
Sergey A. Paston; Anton A. Sheykin. Global Embedding of the Reissner–Nordström Metric in the Flat Ambient Space. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a2/
[1] Bandos I. A., “String-like description of gravity and possible applications for {F}-theory”, Modern Phys. Lett. A, 12 (1997), 799–810, arXiv: hep-th/9608093 | DOI | MR | Zbl
[2] Banerjee R., Majhi B. R., “A new global embedding approach to study {H}awking and {U}nruh effects”, Phys. Lett. B, 690 (2010), 83–86, arXiv: 1002.0985 | DOI | MR
[3] Chen H. Z., Tian Y., “Note on the generalization of the global embedding Minkowski spacetime approach”, Phys. Rev. D, 71 (2005), 024012, 4 pp., arXiv: gr-qc/0410077 | DOI
[4] Collinson C. D., “Embeddings of the plane-fronted waves and other space-time”, J. Math. Phys., 9 (1968), 403–410 | DOI | Zbl
[5] Deser S., Levin O., “Accelerated detectors and temperature in (anti-) de {S}itter spaces”, Classical Quantum Gravity, 14 (1997), L163–L168, arXiv: gr-qc/9706018 | DOI | MR | Zbl
[6] Deser S., Levin O., “Equivalence of {H}awking and {U}nruh temperatures and entropies through flat space embeddings”, Classical Quantum Gravity, 15 (1998), L85–L87, arXiv: hep-th/9806223 | DOI | MR | Zbl
[7] Deser S., Levin O., “Mapping {H}awking into {U}nruh thermal properties”, Phys. Rev. D, 59 (1999), 064004, 7 pp., arXiv: hep-th/9809159 | DOI | MR
[8] Deser S., Pirani F. A. E., Robinson D. C., “New embedding model of general relativity”, Phys. Rev. D, 14 (1976), 3301–3303 | DOI | MR
[9] Ferraris M., Francaviglia M., “Algebraic isometric embeddings of charged spherically symmetric space-times”, Gen. Relativity Gravitation, 12 (1980), 791–804 | DOI | MR | Zbl
[10] Fronsdal C., “Completion and embedding of the {S}chwarzschild solution”, Phys. Rev., 116 (1959), 778–781 | DOI | MR | Zbl
[11] Fujitani T., Ikeda M., Matsumoto M., “On the imbedding of the {S}chwarzschild space-time, I”, J. Math. Kyoto Univ., 1 (1961), 43–61 | MR | Zbl
[12] Giblin Jr. J. T., Marolf D., Garvey R., “Spacetime embedding diagrams for spherically symmetric black holes”, Gen. Relativity Gravitation, 36 (2004), 83–99, arXiv: gr-qc/0305102 | DOI | MR | Zbl
[13] Goenner H. F., “Local isometric embedding of {R}iemannian manifolds and {E}instein's theory of gravitation”, General Relativity and Gravitation, v. 1, Plenum, New York, 1980, 441–468 | MR
[14] Griffiths J. B., Podolský J., Exact space-times in Einstein's general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009 | MR
[15] Hong S. T., “Complete higher dimensional global embedding structures of various black holes”, Gen. Relativity Gravitation, 36 (2004), 1919–1929, arXiv: gr-qc/0310118 | DOI | MR | Zbl
[16] Jacob U., Piran T., “Embedding the {R}eissner–{N}ordström spacetime in {E}uclidean and {M}inkowski spaces”, Classical Quantum Gravity, 23 (2006), 4035–4045, arXiv: gr-qc/0605104 | DOI | MR | Zbl
[17] Karasik D., Davidson A., “Geodetic brane gravity”, Phys. Rev. D, 67 (2003), 064012, 17 pp., arXiv: gr-qc/0207061 | DOI | MR | Zbl
[18] Kasner E., “Finite representation of the solar gravitational field in flat space of six dimensions”, Amer. J. Math., 43 (1921), 130–133 | DOI | MR | Zbl
[19] Maia M. D., “On the integrability conditions for extended objects”, Classical Quantum Gravity, 6 (1989), 173–183 | DOI | MR | Zbl
[20] Pandey S. N., Kansal I. D., “Impossibility of class one electromagnetic fields”, Math. Proc. Cambridge Phil. Soc., 66 (1969), 153–154 | DOI
[21] Paranjape A., Dadhich N., “Embedding diagrams for the {R}eissner–{N}ordström spacetime”, Gen. Relativity Gravitation, 36 (2004), 1189–1195, arXiv: gr-qc/0307056 | DOI | MR | Zbl
[22] Paston S. A., “Gravity as a field theory in flat space-time”, Theoret. and Math. Phys., 169 (2011), 1611–1619, arXiv: 1111.1104 | DOI | Zbl
[23] Paston S. A., Franke V. A., “Canonical formulation of the embedded theory of gravity that is equivalent to {E}instein's general relativity”, Theoret. and Math. Phys., 153 (2007), 1582–1596, arXiv: 0711.0576 | DOI | MR | Zbl
[24] Paston S. A., Semenova A. N., “Constraint algebra for {R}egge–{T}eitelboim formulation of gravity”, Internat. J. Theoret. Phys., 49 (2010), 2648–2658, arXiv: 1003.0172 | DOI | MR | Zbl
[25] Paston S. A., Sheykin A. A., “Embeddings for the {S}chwarzschild metric: classification and new results”, Classical Quantum Gravity, 29 (2012), 095022, 17 pp., arXiv: 1202.1204 | DOI | MR | Zbl
[26] Paston S. A., Sheykin A. A., “From the embedding theory to general relativity in a result of inflation”, Internat. J. Modern Phys. D, 21 (2012), 1250043, 19 pp., arXiv: 1106.5212 | DOI | MR | Zbl
[27] Pavšič M., “Classical theory of a space-time sheet”, Phys. Lett. A, 107 (1985), 66–70 | DOI | MR | Zbl
[28] Pavšič M., Tapia V., Resource letter on geometrical results for embeddings and branes, arXiv: gr-qc/0010045
[29] Płazowski J., “The imbedding method of finding the maximal extensions of solutions of {E}instein field equations”, Acta Phys. Polon. B, 4 (1973), 49–63 | MR
[30] Regge T., Teitelboim C., “General relativity à la string: a progress report”, Proceedings of the First Marcel Grossmann Meeting on General Relativity (Trieste, Italy, 1975), ed. R. Ruffini, North-Holland Publishing Company, 1977, 77–88
[31] Rosen J., “Embedding of the {S}chwarzschild and {R}eissner–{W}eyl solutions”, Nuovo Cimento, 38 (1965), 631–633 | DOI | MR | Zbl
[32] Rosen J., “Embedding of various relativistic {R}iemannian spaces in pseudo-{E}uclidean spaces”, Rev. Modern Phys., 37 (1965), 204–214 | DOI | MR | Zbl
[33] Santos N. L., Dias Ó. J. C., Lemos J. P. S., “Global embedding of {$D$}-dimensional black holes with a cosmological constant in {M}inkowskian spacetimes: matching between {H}awking temperature and {U}nruh temperature”, Phys. Rev. D, 70 (2004), 124033, 7 pp., arXiv: hep-th/0412076 | DOI | MR
[34] Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of {E}instein's field equations, Cambridge Monographs on Mathematical Physics, 2nd ed., Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[35] Tapia V., “Gravitation à la string”, Classical Quantum Gravity, 6 (1989), L49–L56 | DOI | MR | Zbl