@article{SIGMA_2014_10_a19,
author = {Russell Johnson and Luca Zampogni},
title = {The {Sturm{\textendash}Liouville} {Hierarchy} of {Evolution} {Equations} and {Limits} {of~Algebro-Geometric} {Initial} {Data}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a19/}
}
TY - JOUR AU - Russell Johnson AU - Luca Zampogni TI - The Sturm–Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a19/ LA - en ID - SIGMA_2014_10_a19 ER -
%0 Journal Article %A Russell Johnson %A Luca Zampogni %T The Sturm–Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a19/ %G en %F SIGMA_2014_10_a19
Russell Johnson; Luca Zampogni. The Sturm–Liouville Hierarchy of Evolution Equations and Limits of Algebro-Geometric Initial Data. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a19/
[1] Alber M. S., Fedorov Y. N., “Algebraic geometrical solutions for certain evolution equations and {H}amiltonian flows on nonlinear subvarieties of generalized {J}acobians”, Inverse Problems, 17 (2001), 1017–1042 | DOI | MR | Zbl
[2] Beals R., Sattinger D. H., Szmigielski J., “Multipeakons and the classical moment problem”, Adv. Math., 154 (2000), 229–257, arXiv: solv-int/9906001 | DOI | MR | Zbl
[3] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometric approach to nonlinear integrable equations, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994 | Zbl
[4] Boutet de Monvel A., Egorova I., “On solutions of nonlinear {S}chrödinger equations with {C}antor-type spectrum”, J. Anal. Math., 72 (1997), 1–20 | DOI | MR | Zbl
[5] Camassa R., Holm D. D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR | Zbl
[6] Craig W., “The trace formula for {S}chrödinger operators on the line”, Comm. Math. Phys., 126 (1989), 379–407 | DOI | MR | Zbl
[7] Dubrovin B. A., Matveev V. B., Novikov S. P., “Nonlinear equations of {K}orteweg–de {V}ries type, finite-band linear operators and {A}belian varieties”, Russ. Math. Surv., 31 (1976), 59–146 | DOI | MR | Zbl
[8] Egorova I. E., “On a class of almost periodic solutions of the {K}d{V} equation with a nowhere dense spectrum”, Russian Acad. Sci. Dokl. Math., 45 (1993), 290–293 | MR
[9] Egorova I. E., “The {C}auchy problem for the {K}d{V} equation with almost periodic initial data whose spectrum is nowhere dense”, Spectral operator theory and related topics, Adv. Soviet Math., 19, Amer. Math. Soc., Providence, RI, 1994, 181–208 | MR | Zbl
[10] Fabbri R., Johnson R., Zampogni L., “Nonautonomous differential systems in two dimensions”, Handbook of Differential Equations: Ordinary Differential Equations, v. IV, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, 133–268 | DOI | MR | Zbl
[11] Gardner C. S., Greene J. M., Kruskal M. D., Miura R. M., “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1097 | DOI
[12] Gesztesy F., Holden H., “Algebro-geometric solutions of the {C}amassa–{H}olm hierarchy”, Rev. Mat. Iberoam., 19 (2003), 73–142, arXiv: nlin.SI/0105021 | DOI | MR | Zbl
[13] Gesztesy F., Holden H., Soliton equations and their algebro-geometric solutions, v. I, Cambridge Studies in Advanced Mathematics, 79, $(1+1)$-dimensional continuous models, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl
[14] Gesztesy F., Karwowski W., Zhao Z., “Limits of soliton solutions”, Duke Math. J., 68 (1992), 101–150 | DOI | MR | Zbl
[15] Johnson R., “Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients”, J. Differential Equations, 61 (1986), 54–78 | DOI | MR | Zbl
[16] Johnson R., “On the {S}ato–{S}egal–{W}ilson solutions of the {K}-d{V} equation”, Pacific J. Math., 132 (1988), 343–355 | DOI | MR | Zbl
[17] Johnson R., Moser J., “The rotation number for almost periodic potentials”, Comm. Math. Phys., 84 (1982), 403–438 | DOI | MR | Zbl
[18] Johnson R., Zampogni L., “On the inverse {S}turm–{L}iouville problem”, Discrete Contin. Dyn. Syst., 18 (2007), 405–428 | DOI | MR | Zbl
[19] Johnson R., Zampogni L., “Description of the algebro-geometric {S}turm–{L}iouville coefficients”, J. Differential Equations, 244 (2008), 716–740 | DOI | MR | Zbl
[20] Johnson R., Zampogni L., “Some remarks concerning reflectionless {S}turm–{L}iouville potentials”, Stoch. Dyn., 8 (2008), 413–449 | DOI | MR | Zbl
[21] Johnson R., Zampogni L., “On the {C}amassa–{H}olm and {K}-d{V} hierarchies”, J. Dynam. Differential Equations, 22 (2010), 331–366 | DOI | MR | Zbl
[22] Johnson R., Zampogni L., “Remarks on a paper of {K}otani concerning generalized reflectionless {S}chrödinger potentials”, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 559–586 | DOI | MR | Zbl
[23] Johnson R., Zampogni L., “The {S}turm–{L}iouville hierarchy of evolution equations”, Adv. Nonlinear Stud., 11 (2011), 555–591 | MR | Zbl
[24] Johnson R., Zampogni L., “The {S}turm–{L}iouville hierarchy of evolution equations, {II}”, Adv. Nonlinear Stud., 12 (2012), 501–532 | MR | Zbl
[25] Johnson R., Zampogni L., On a Gel'fand–Levitan theory for the Sturm–Liouville operator, {P}reprint
[26] Knopp K., Funktionentheorie, v. II, Anwendungen und Weiterführung der allgemeinen Theorie, de Gruyter, Berlin, 1981 | Zbl
[27] Kotani S., “Kd{V} flow on generalized reflectionless potentials”, J. Math. Phys. Anal. Geometry, 4 (2008), 490–528 | MR | Zbl
[28] Lax P. D., Levermore C. D., “The small dispersion limit of the {K}orteweg-de {V}ries equation, {I}”, Comm. Pure Appl. Math., 36 (1983), 253–290 | DOI | MR | Zbl
[29] Lax P. D., Levermore C. D., “The small dispersion limit of the {K}orteweg-de {V}ries equation, {II}”, Comm. Pure Appl. Math., 36 (1983), 571–593 | DOI | MR | Zbl
[30] Lax P. D., Levermore C. D., “The small dispersion limit of the {K}orteweg-de {V}ries equation, {III}”, Comm. Pure Appl. Math., 36 (1983), 809–829 | DOI | MR | Zbl
[31] Levitan B. M., “Approximation of infinite-zone by finite-zone potentials”, Math. USSR Izv., 20 (1983), 55–87 | DOI | MR | Zbl
[32] Levitan B. M., “On the closure of the set of finite-zone potentials”, Math. USSR Sb., 51 (1985), 67–89 | DOI | Zbl
[33] Levitan B. M., Inverse {S}turm–{L}iouville problems, VSP, Zeist, 1987 | MR
[34] Lundina D., “Compactness of the set of reflectionless potentials”, Teor. Funkts. Funkts. Anal. Prilozh., 44 (1985), 55–66
[35] Marchenko V. A., Sturm–{L}iouville operators and applications, Operator Theory: Advances and Applications, 22, Birkhäuser Verlag, Basel, 1986 | DOI | MR | Zbl
[36] Marchenko V. A., “The {C}auchy problem for the {K}d{V} equation with nondecreasing initial data”, What is Integrability?, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1991, 273–318 | DOI | MR | Zbl
[37] Marchenko V. A., Ostrovsky I. V., “Approximation of periodic by finite-zone potentials”, Sel. Math. Sov., 6 (1987), 101–136 | Zbl
[38] McKean H. P., “The {L}iouville correspondence between the {K}orteweg-de {V}ries and the {C}amassa–{H}olm hierarchies”, Comm. Pure Appl. Math., 56 (2003), 998–1015 | DOI | MR | Zbl
[39] McKean H. P., van Moerbeke P., “The spectrum of {H}ill's equation”, Invent. Math., 30 (1975), 217–274 | DOI | MR | Zbl
[40] Novikov S., Manakov S. V., Pitaevskiĭ L. P., Zakharov V. E., Theory of solitons. The inverse scattering method, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1984 | MR
[41] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto, 1981, 30–46 | Zbl
[42] Segal G., Wilson G., “Loop groups and equations of {K}d{V} type”, Inst. Hautes Études Sci. Publ. Math., 1985, 5–65 | DOI | Zbl
[43] Venakides S., “The {K}orteweg–de {V}ries equation with small dispersion: higher order {L}ax–{L}evermore theory”, Comm. Pure Appl. Math., 43 (1990), 335–361 | DOI | MR | Zbl
[44] Zampogni L., “On algebro-geometric solutions of the {C}amassa–{H}olm hierarchy”, Adv. Nonlinear Stud., 7 (2007), 345–380 | MR | Zbl
[45] Zampogni L., “On infinite order {K}-d{V} hierarchies”, J. Appl. Funct. Anal., 4 (2009), 140–170 | MR | Zbl