@article{SIGMA_2014_10_a18,
author = {Yuan Xu},
title = {Tight {Frame} with {Hahn} and {Krawtchouk} {Polynomials} of {Several} {Variables}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/}
}
Yuan Xu. Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/
[1] Bachoc C., Ehler M., “Tight {$p$}-fusion frames”, Appl. Comput. Harmon. Anal., 35 (2013), 1–15, arXiv: 1201.1798 | DOI | MR
[2] Benedetto J. J., Fickus M., “Finite normalized tight frames”, Adv. Comput. Math., 18 (2003), 357–385 | DOI | MR | Zbl
[3] Casazza P. G., “Custom building finite frames”, Wavelets, frames and operator theory, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004, 61–86 | DOI | MR | Zbl
[4] Casazza P. G., Kutyniok G., Philipp F., “Introduction to finite frame theory”, Finite Frames, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, 1–53 | DOI | MR | Zbl
[5] Diaconis D., Griffiths R., An introduction to multivariate Krawtchouk polynomials and their applications, arXiv: 1309.0112
[6] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[7] Griffiths R. C., Spanò D., “Multivariate {J}acobi and {L}aguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate {H}ahn and {M}eixner polynomials”, Bernoulli, 17 (2011), 1095–1125, arXiv: 0809.1431 | DOI | MR | Zbl
[8] Griffiths R. C., Spanò D., “Orthogonal polynomial kernels and canonical correlations for {D}irichlet measures”, Bernoulli, 19 (2013), 548–598, arXiv: 1003.5131 | DOI | MR | Zbl
[9] Heil C., What is {$\ldots$} a frame?, Notices Amer. Math. Soc., 60 (2013), 748–750 | DOI | MR
[10] Iliev P., Xu Y., “Discrete orthogonal polynomials and difference equations of several variables”, Adv. Math., 212 (2007), 1–36, arXiv: math.CA/0508039 | DOI | MR | Zbl
[11] Karlin S., McGregor J., “Linear growth models with many types and multidimensional {H}ahn polynomials”, Theory and Application of Special Functions, {P}roc. {A}dvanced {S}em. ({M}ath. {R}es. {C}enter, {U}niv. {W}isconsin, {M}adison, {W}is., 1975), ed. R. A. Askey, Academic Press, New York, 1975, 261–288 | MR
[12] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 232–272 | DOI | MR
[13] Tratnik M. V., “Multivariable biorthogonal {H}ahn polynomials”, J. Math. Phys., 30 (1989), 627–634 | DOI | MR | Zbl
[14] Tratnik M. V., “Multivariable {M}eixner, {K}rawtchouk, and {M}eixner–{P}ollaczek polynomials”, J. Math. Phys., 30 (1989), 2740–2749 | DOI | MR | Zbl
[15] Tratnik M. V., “Some multivariable orthogonal polynomials of the {A}skey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl
[16] Waldron S., “On the {B}ernstein–{B}ézier form of {J}acobi polynomials on a simplex”, J. Approx. Theory, 140 (2006), 86–99 | DOI | MR | Zbl
[17] Waldron S., “Continuous and discrete tight frames of orthogonal polynomials for a radially symmetric weight”, Constr. Approx., 30 (2009), 33–52 | DOI | MR | Zbl
[18] Xu Y., “Monomial orthogonal polynomials of several variables”, J. Approx. Theory, 133 (2005), 1–37 | DOI | MR
[19] Xu Y., Hahn, Jacobi, and Krawtchouk polynomials of several variables, arXiv: 1309.1510