Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Finite tight frames for polynomial subspaces are constructed using monic Hahn polynomials and Krawtchouk polynomials of several variables. Based on these polynomial frames, two methods for constructing tight frames for the Euclidean spaces are designed. With ${\mathsf r}(d,n):= \binom{n+d-1}{n}$, the first method generates, for each $m \ge n$, two families of tight frames in ${\mathbb R}^{{\mathsf r}(d,n)}$ with ${\mathsf r}(d+1,m)$ elements. The second method generates a tight frame in ${\mathbb R}^{{\mathsf r}(d,N)}$ with $1 + N \times{\mathsf r}(d+1, N)$ vectors. All frame elements are given in explicit formulas.
Keywords: Jacobi polynomials; simplex; Hahn polynomials; Krawtchouk polynomials; several variables; tight frame.
@article{SIGMA_2014_10_a18,
     author = {Yuan Xu},
     title = {Tight {Frame} with {Hahn} and {Krawtchouk} {Polynomials} of {Several} {Variables}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/}
}
TY  - JOUR
AU  - Yuan Xu
TI  - Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/
LA  - en
ID  - SIGMA_2014_10_a18
ER  - 
%0 Journal Article
%A Yuan Xu
%T Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/
%G en
%F SIGMA_2014_10_a18
Yuan Xu. Tight Frame with Hahn and Krawtchouk Polynomials of Several Variables. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a18/

[1] Bachoc C., Ehler M., “Tight {$p$}-fusion frames”, Appl. Comput. Harmon. Anal., 35 (2013), 1–15, arXiv: 1201.1798 | DOI | MR

[2] Benedetto J. J., Fickus M., “Finite normalized tight frames”, Adv. Comput. Math., 18 (2003), 357–385 | DOI | MR | Zbl

[3] Casazza P. G., “Custom building finite frames”, Wavelets, frames and operator theory, Contemp. Math., 345, Amer. Math. Soc., Providence, RI, 2004, 61–86 | DOI | MR | Zbl

[4] Casazza P. G., Kutyniok G., Philipp F., “Introduction to finite frame theory”, Finite Frames, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, 1–53 | DOI | MR | Zbl

[5] Diaconis D., Griffiths R., An introduction to multivariate Krawtchouk polynomials and their applications, arXiv: 1309.0112

[6] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl

[7] Griffiths R. C., Spanò D., “Multivariate {J}acobi and {L}aguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate {H}ahn and {M}eixner polynomials”, Bernoulli, 17 (2011), 1095–1125, arXiv: 0809.1431 | DOI | MR | Zbl

[8] Griffiths R. C., Spanò D., “Orthogonal polynomial kernels and canonical correlations for {D}irichlet measures”, Bernoulli, 19 (2013), 548–598, arXiv: 1003.5131 | DOI | MR | Zbl

[9] Heil C., What is {$\ldots$} a frame?, Notices Amer. Math. Soc., 60 (2013), 748–750 | DOI | MR

[10] Iliev P., Xu Y., “Discrete orthogonal polynomials and difference equations of several variables”, Adv. Math., 212 (2007), 1–36, arXiv: math.CA/0508039 | DOI | MR | Zbl

[11] Karlin S., McGregor J., “Linear growth models with many types and multidimensional {H}ahn polynomials”, Theory and Application of Special Functions, {P}roc. {A}dvanced {S}em. ({M}ath. {R}es. {C}enter, {U}niv. {W}isconsin, {M}adison, {W}is., 1975), ed. R. A. Askey, Academic Press, New York, 1975, 261–288 | MR

[12] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 232–272 | DOI | MR

[13] Tratnik M. V., “Multivariable biorthogonal {H}ahn polynomials”, J. Math. Phys., 30 (1989), 627–634 | DOI | MR | Zbl

[14] Tratnik M. V., “Multivariable {M}eixner, {K}rawtchouk, and {M}eixner–{P}ollaczek polynomials”, J. Math. Phys., 30 (1989), 2740–2749 | DOI | MR | Zbl

[15] Tratnik M. V., “Some multivariable orthogonal polynomials of the {A}skey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl

[16] Waldron S., “On the {B}ernstein–{B}ézier form of {J}acobi polynomials on a simplex”, J. Approx. Theory, 140 (2006), 86–99 | DOI | MR | Zbl

[17] Waldron S., “Continuous and discrete tight frames of orthogonal polynomials for a radially symmetric weight”, Constr. Approx., 30 (2009), 33–52 | DOI | MR | Zbl

[18] Xu Y., “Monomial orthogonal polynomials of several variables”, J. Approx. Theory, 133 (2005), 1–37 | DOI | MR

[19] Xu Y., Hahn, Jacobi, and Krawtchouk polynomials of several variables, arXiv: 1309.1510