@article{SIGMA_2014_10_a17,
author = {David Nadler},
title = {Fukaya {Categories} as {Categorical} {Morse} {Homology}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a17/}
}
David Nadler. Fukaya Categories as Categorical Morse Homology. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a17/
[1] Abouzaid M., “A topological model for the {F}ukaya categories of plumbings”, J. Differential Geom., 87 (2011), 1–80, arXiv: 0904.1474 | MR | Zbl
[2] Abouzaid M., “On the wrapped {F}ukaya category and based loops”, J. Symplectic Geom., 10 (2012), 27–79, arXiv: 0904.1474 | DOI | MR | Zbl
[3] Abouzaid M., Auroux D., Efimov A. I., Katzarkov L., Orlov D., “Homological mirror symmetry for punctured spheres”, J. Amer. Math. Soc., 26 (2013), 1051–1083, arXiv: 1103.4322 | DOI | MR | Zbl
[4] Abouzaid M., Seidel P., “An open string analogue of {V}iterbo functoriality”, Geom. Topol., 14 (2010), 627–718, arXiv: 0712.3177 | DOI | MR | Zbl
[5] Audin M., Lalonde F., Polterovich L., “Symplectic rigidity: {L}agrangian submanifolds”, Holomorphic Curves in Symplectic Geometry, Progr. Math., 117, Birkhäuser, Basel, 1994, 271–321 | MR
[6] Auroux D., “Fukaya categories and bordered {H}eegaard–{F}loer homology”, Proceedings of the {I}nternational {C}ongress of {M}athematicians, v. II, Hindustan Book Agency, New Delhi, 2010, 917–941, arXiv: 1003.2962 | MR
[7] Auroux D., “Fukaya categories of symmetric products and bordered {H}eegaard–{F}loer homology”, J. Gökova Geom. Topol. GGT, 4 (2010), 1–54, arXiv: 1001.4323 | MR | Zbl
[8] Beilinson A., Bernstein J., “A proof of {J}antzen conjectures”, I. {M}. {G}el'fand {S}eminar, Adv. Soviet Math., 16, Amer. Math. Soc., Providence, RI, 1993, 1–50 | MR | Zbl
[9] Beilinson A. A., “Coherent sheaves on {$P^{n}$} and problems in linear algebra”, Funct. Anal. Appl., 12 (1978), 214–216 | DOI | MR
[10] Ben-Zvi D., Francis J., Nadler D., “Integral transforms and {D}rinfeld centers in derived algebraic geometry”, J. Amer. Math. Soc., 23 (2010), 909–966, arXiv: 0805.0157 | DOI | MR | Zbl
[11] Bierstone E., Milman P. D., “Semianalytic and subanalytic sets”, Inst. Hautes Études Sci. Publ. Math., 1988, 5–42 | DOI | MR | Zbl
[12] Biran P., “Lagrangian barriers and symplectic embeddings”, Geom. Funct. Anal., 11 (2001), 407–464 | DOI | MR | Zbl
[13] Biran P., “Lagrangian non-intersections”, Geom. Funct. Anal., 16 (2006), 279–326, arXiv: math.SG/0412110 | DOI | MR | Zbl
[14] Bourgeois F., Ekholm T., Eliashberg Y., “Symplectic homology product via {L}egendrian surgery”, Proc. Natl. Acad. Sci. USA, 108 (2011), 8114–8121, arXiv: 1012.4218 | DOI | MR | Zbl
[15] Bourgeois F., Ekholm T., Eliashberg Y., “Effect of {L}egendrian surgery”, Geom. Topol., 16 (2012), 301–389, arXiv: 0911.0026 | DOI | MR | Zbl
[16] Braden T., Licata A., Proudfoot N., Webster B., “Hypertoric category {${\mathcal O}$}”, Adv. Math., 231 (2012), 1487–1545, arXiv: 1010.2001 | DOI | MR | Zbl
[17] Cieliebak K., “Handle attaching in symplectic homology and the chord conjecture”, J. Eur. Math. Soc., 4 (2002), 115–142 | DOI | MR | Zbl
[18] Cieliebak K., Eliashberg Y., Symplectic geometry of Stein manifolds, unpublished, 2006
[19] Eliashberg Y., “Symplectic geometry of plurisubharmonic functions”, Gauge Theory and Symplectic Geometry ({M}ontreal, {PQ}, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 488, Kluwer Acad. Publ., Dordrecht, 1997, 49–67 | MR | Zbl
[20] Eliashberg Y., Gromov M., “Convex symplectic manifolds”, Several Complex Variables and Complex Geometry ({S}anta {C}ruz, {CA}, 1989), v. 2, Proc. Sympos. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 135–162 | DOI | MR
[21] Fukaya K., Oh Y.-G., “Zero-loop open strings in the cotangent bundle and {M}orse homotopy”, Asian J. Math., 1 (1997), 96–180 | MR | Zbl
[22] Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory — anomaly and obstruction, {K}yoto Preprint, Math 00-17, 2000
[23] Gordon I., Stafford J. T., “Rational {C}herednik algebras and {H}ilbert schemes”, Adv. Math., 198 (2005), 222–274, arXiv: math.RA/0407516 | DOI | MR | Zbl
[24] Gordon I., Stafford J. T., “Rational {C}herednik algebras and {H}ilbert schemes. {II}: {R}epresentations and sheaves”, Duke Math. J., 132 (2006), 73–135, arXiv: math.RT/0410293 | DOI | MR | Zbl
[25] Gotay M. J., “On coisotropic imbeddings of presymplectic manifolds”, Proc. Amer. Math. Soc., 84 (1982), 111–114 | DOI | MR | Zbl
[26] Kashiwara M., Rouquier R., “Microlocalization of rational {C}herednik algebras”, Duke Math. J., 144 (2008), 525–573, arXiv: 0705.1245 | DOI | MR | Zbl
[27] Kashiwara M., Schapira P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer-Verlag, Berlin, 1994 | MR
[28] Khovanov M., Seidel P., “Quivers, {F}loer cohomology, and braid group actions”, J. Amer. Math. Soc., 15 (2002), 203–271, arXiv: math.QA/0006056 | DOI | MR | Zbl
[29] Kontsevich M., Symplectic geometry of homological algebra, 2009 http://www.ihes.fr/m̃axim/TEXTS/Symplectic_AT2009.pdf
[30] Kostant B., “On {W}hittaker vectors and representation theory”, Invent. Math., 48 (1978), 101–184 | DOI | MR | Zbl
[31] Loday J. L., “The diagonal of the {S}tasheff polytope”, Higher Structures in Geometry and Physics, Progr. Math., 287, Birkhäuser/Springer, New York, 2011, 269–292, arXiv: 0710.0572 | DOI | MR | Zbl
[32] Losev I., “Finite {$W$}-algebras”, Proceedings of the {I}nternational {C}ongress of {M}athematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 1281–1307, arXiv: 1003.5811 | MR
[33] Losev I., “Quantized symplectic actions and {$W$}-algebras”, J. Amer. Math. Soc., 23 (2010), 35–59, arXiv: 0707.3108 | DOI | MR | Zbl
[34] Lurie J., Higher algebra, http://www.math.harvard.edu/l̃urie/
[35] Lurie J., Higher topos theory, Annals of Mathematics Studies, 170, Princeton University Press, Princeton, NJ, 2009, arXiv: math.CT/0608040 | MR | Zbl
[36] Lurie J., “On the classification of topological field theories”, Current Developments in Mathematics 2008, Int. Press, Somerville, MA, 2009, 129–280, arXiv: 0905.0465 | MR | Zbl
[37] Manolescu C., “Nilpotent slices, {H}ilbert schemes, and the {J}ones polynomial”, Duke Math. J., 132 (2006), 311–369, arXiv: math.SG/0411015 | DOI | MR | Zbl
[38] Markl M., Shnider S., “Associahedra, cellular {$W$}-construction and products of {$A_\infty$}-algebras”, Trans. Amer. Math. Soc., 358 (2006), 2353–2372, arXiv: math.AT/0312277 | DOI | MR | Zbl
[39] Ma'u S., Gluing pseudoholomorphic quilted disks, arXiv: 0909.3339
[40] McGerty K., Nevins T., Derived equivalence for quantum symplectic resolutions, arXiv: 1108.6267 | MR
[41] Nadler D., “Microlocal branes are constructible sheaves”, Selecta Math. (N.S.), 15 (2009), 563–619, arXiv: math.SG/0612399 | DOI | MR | Zbl
[42] Nadler D., “Springer theory via the {H}itchin fibration”, Compos. Math., 147 (2011), 1635–1670, arXiv: 0806.4566 | DOI | MR | Zbl
[43] Nadler D., Zaslow E., “Constructible sheaves and the {F}ukaya category”, J. Amer. Math. Soc., 22 (2009), 233–286, arXiv: math.SG/0604379 | DOI | MR | Zbl
[44] Oh Y.-G., Unwrapped continuation invariance in Lagrangian Floer theory: energy and $C^0$ estimates, arXiv: 0910.1131
[45] Perutz T., “Lagrangian matching invariants for fibred four-manifolds, {I}”, Geom. Topol., 11 (2007), 759–828, arXiv: math.SG/0606061 | DOI | MR | Zbl
[46] Perutz T., “Lagrangian matching invariants for fibred four-manifolds, {II}”, Geom. Topol., 12 (2008), 1461–1542, arXiv: math.SG/0606062 | DOI | MR | Zbl
[47] Perutz T., A symplectic Gysin sequence, arXiv: 0807.1863
[48] Premet A., “Special transverse slices and their enveloping algebras”, Adv. Math., 170 (2002), 1–55 | DOI | MR | Zbl
[49] Saneblidze S., Umble R., A diagonal on the associahedra, arXiv: math.AT/0011065
[50] Saneblidze S., Umble R., “Diagonals on the permutahedra, multiplihedra and associahedra”, Homology Homotopy Appl., 6 (2004), 363–411, arXiv: math.AT/0209109 | DOI | MR | Zbl
[51] Seidel P., “More about vanishing cycles and mutation”, Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 429–465, arXiv: math.SG/0010032 | DOI | MR | Zbl
[52] Seidel P., “Vanishing cycles and mutation”, European {C}ongress of {M}athematics (Barcelona, 2000), v. II, Progr. Math., 202, Birkhäuser, Basel, 2001, 65–85, arXiv: math.SG/0007115 | MR | Zbl
[53] Seidel P., “A long exact sequence for symplectic {F}loer cohomology”, Topology, 42 (2003), 1003–1063, arXiv: math.SG/0105186 | DOI | MR | Zbl
[54] Seidel P., “{$A_\infty$}-subalgebras and natural transformations”, Homology, Homotopy Appl., 10 (2008), 83–114, arXiv: math.KT/0701778 | DOI | MR | Zbl
[55] Seidel P., Fukaya categories and {P}icard–{L}efschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008, arXiv: math.SG/0206155 | DOI | MR | Zbl
[56] Seidel P., “Symplectic homology as {H}ochschild homology”, Algebraic Geometry (Seattle, 2005), v. 1, Proc. Sympos. Pure Math., 80, Amer. Math. Soc., Providence, RI, 2009, 415–434, arXiv: math.SG/0609037 | DOI | MR | Zbl
[57] Seidel P., Cotangent bundles and their relatives, morse Lectures, , Princeton University, 2010 http://www-math.mit.edu/s̃eidel/talks/morse-lectures-1.pdf
[58] Seidel P., “Homological mirror symmetry for the genus two curve”, J. Algebraic Geom., 20 (2011), 727–769, arXiv: 0812.1171 | DOI | MR | Zbl
[59] Seidel P., “Some speculations on pairs-of-pants decompositions and {F}ukaya categories”, Surveys in Differential Geometry, 17, Int. Press, Boston, MA, 2012, 411–425, arXiv: 1004.0906 | DOI | MR
[60] Seidel P., Smith I., “A link invariant from the symplectic geometry of nilpotent slices”, Duke Math. J., 134 (2006), 453–514, arXiv: math.SG/0405089 | DOI | MR | Zbl
[61] Sheridan N., “On the homological mirror symmetry conjecture for pairs of pants”, J. Differential Geom., 89 (2011), 271–367, arXiv: 1012.3238 | MR | Zbl
[62] Sibilla N., Treumann D., Zaslow E., Ribbon graphs and mirror symmetry, I, arXiv: 1103.2462
[63] Sikorav J. C., “Some properties of holomorphic curves in almost complex manifolds”, Holomorphic curves in symplectic geometry, Progr. Math., 117, Birkhäuser, Basel, 1994, 165–189 | MR
[64] Stasheff J. D., “Homotopy associativity of {$H$}-spaces, {I}”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl
[65] Stasheff J. D., “Homotopy associativity of {$H$}-spaces, {II}”, Trans. Amer. Math. Soc., 108 (1963), 293–312 | DOI | MR | Zbl
[66] van den Dries L., Miller C., “Geometric categories and o-minimal structures”, Duke Math. J., 84 (1996), 497–540 | DOI | MR | Zbl
[67] Wehrheim K., Woodward C. T. http://math.berkeley.edu/k̃atrin/
[68] Wehrheim K., Woodward C., Pseudoholomorphic quilts, arXiv: 0905.1369
[69] Wehrheim K., Woodward C. T., “Functoriality for {L}agrangian correspondences in {F}loer theory”, Quantum Topol., 1 (2010), 129–170, arXiv: 0708.2851 | DOI | MR | Zbl
[70] Wehrheim K., Woodward C. T., “Quilted {F}loer cohomology”, Geom. Topol., 14 (2010), 833–902, arXiv: 0905.1370 | DOI | MR | Zbl
[71] Wehrheim K., Woodward C. T., “Floer cohomology and geometric composition of {L}agrangian correspondences”, Adv. Math., 230 (2012), 177–228, arXiv: 0905.1368 | DOI | MR | Zbl
[72] Wehrheim K., Woodward C. T., “Quilted {F}loer trajectories with constant components: corrigendum to the article “{Q}uilted {F}loer cohomology””, Geom. Topol., 16 (2012), 127–154, arXiv: 1101.3770 | DOI | MR | Zbl
[73] Weinstein A., Lectures on symplectic manifolds, Regional Conference Series in Mathematics, 29, Amer. Math. Soc., Providence, R.I., 1977 | MR | Zbl
[74] Weinstein A., “Neighborhood classification of isotropic embeddings”, J. Differential Geom., 16 (1981), 125–128 | MR | Zbl
[75] Weinstein A., “Contact surgery and symplectic handlebodies”, Hokkaido Math. J., 20 (1991), 241–251 | DOI | MR | Zbl