@article{SIGMA_2014_10_a16,
author = {Stefan Rauch-Wojciechowski and Nils Rutstam},
title = {Dynamics of an {Inverting} {Tippe} {Top}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/}
}
Stefan Rauch-Wojciechowski; Nils Rutstam. Dynamics of an Inverting Tippe Top. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/
[1] Bou-Rabee N. M., Marsden J. E., Romero L. A., “Tippe top inversion as a dissipation-induced instability”, SIAM J. Appl. Dyn. Syst., 3 (2004), 352–377 | DOI | MR | Zbl
[2] Chaplygin S. A., “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 119–130 | DOI | MR | Zbl
[3] Cohen R. J., “The tippe top revisited”, Amer. J. Phys., 45 (1977), 12–17 | DOI
[4] Del Campo A. R., “Tippe top (topsy-turnee top) continued”, Amer. J. Phys., 23 (1955), 544–545 | DOI
[5] Ebenfeld S., Scheck F., “A new analysis of the tippe top: asymptotic states and {L}iapunov stability”, Ann. Physics, 243 (1995), 195–217, arXiv: chao-dyn/9501008 | DOI | MR | Zbl
[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953
[7] Glad S. T., Petersson D., Rauch-Wojciechowski S., “Phase space of rolling solutions of the tippe top”, SIGMA, 3 (2007), 041, 14 pp., arXiv: nlin.SI/0703016 | DOI | MR | Zbl
[8] Jones E., Oliphant T., Peterson P., Open source scientific tools for {Python}, http://www.scipy.org
[9] Karapetyan A. V., “Qualitative investigation of the dynamics of a top on a plane with friction”, J. Appl. Math. Mech., 55 (1991), 563–565 | DOI | MR | Zbl
[10] Karapetyan A. V., Rubanovskii V. N., “On the stability of stationary motions of non-conservative mechanical systems”, J. Appl. Math. Mech., 50 (1986), 30–35 | DOI | Zbl
[11] Or A. C., “The dynamics of a tippe top”, SIAM J. Appl. Math., 54 (1994), 597–609 | DOI | MR | Zbl
[12] Rauch-Wojciechowski S., What does it mean to explain the rising of the tippe top?, Regul. Chaotic Dyn., 13 (2008), 316–331 | DOI | MR | Zbl
[13] Rauch-Wojciechowski S., Sköldstam M., Glad T., “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10 (2005), 333–362 | DOI | MR | Zbl
[14] Rutstam N., Study of equations for tippe top and related rigid bodies, {L}inköping Studies in Science and Technology, Theses No 1106, Matematiska Institutionen, Linköpings Universitet, 2010 http://swepub.kb.se/bib/swepub:oai:DiVA.org:liu-60835
[15] Rutstam N., “Tippe top equations and equations for the related mechanical systems”, SIGMA, 8 (2012), 019, 22 pp., arXiv: 1204.1123 | DOI | MR | Zbl
[16] Rutstam N., “High frequency behavior of a rolling ball and simplification of the separation equation”, Regul. Chaotic Dyn., 18 (2013), 226–236 | DOI | MR | Zbl
[17] Sturm C., “Mémoire sur la résolution des équations numériques”, Bull. de Ferussac, 11 (1829), 419–425
[18] Ueda T., Sasaki K., Watanabe S., “Motion of the tippe top: gyroscopic balance condition and stability”, SIAM J. Appl. Dyn. Syst., 4 (2005), 1159–1194, arXiv: physics/0507198 | DOI | MR | Zbl