Dynamics of an Inverting Tippe Top
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existing results about inversion of a tippe top (TT) establish stability of asymptotic solutions and prove inversion by using the LaSalle theorem. Dynamical behaviour of inverting solutions has only been explored numerically and with the use of certain perturbation techniques. The aim of this paper is to provide analytical arguments showing oscillatory behaviour of TT through the use of the main equation for the TT. The main equation describes time evolution of the inclination angle $\theta(t)$ within an effective potential $V(\cos\theta,D(t),\lambda)$ that is deforming during the inversion. We prove here that $V(\cos\theta,D(t),\lambda)$ has only one minimum which (if Jellett's integral is above a threshold value $\lambda>\lambda_{\text{thres}}=\frac{\sqrt{mgR^3I_3\alpha}(1+\alpha)^2}{\sqrt{1+\alpha-\gamma}}$ and $1-\alpha^2\gamma=\frac{I_1}{I_3}1$ holds) moves during the inversion from a neighbourhood of $\theta=0$ to a neighbourhood of $\theta=\pi$. This allows us to conclude that $\theta(t)$ is an oscillatory function. Estimates for a maximal value of the oscillation period of $\theta(t)$ are given.
Keywords: tippe top; rigid body; nonholonomic mechanics; integrals of motion; gliding friction.
@article{SIGMA_2014_10_a16,
     author = {Stefan Rauch-Wojciechowski and Nils Rutstam},
     title = {Dynamics of an {Inverting} {Tippe} {Top}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/}
}
TY  - JOUR
AU  - Stefan Rauch-Wojciechowski
AU  - Nils Rutstam
TI  - Dynamics of an Inverting Tippe Top
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/
LA  - en
ID  - SIGMA_2014_10_a16
ER  - 
%0 Journal Article
%A Stefan Rauch-Wojciechowski
%A Nils Rutstam
%T Dynamics of an Inverting Tippe Top
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/
%G en
%F SIGMA_2014_10_a16
Stefan Rauch-Wojciechowski; Nils Rutstam. Dynamics of an Inverting Tippe Top. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a16/

[1] Bou-Rabee N. M., Marsden J. E., Romero L. A., “Tippe top inversion as a dissipation-induced instability”, SIAM J. Appl. Dyn. Syst., 3 (2004), 352–377 | DOI | MR | Zbl

[2] Chaplygin S. A., “On a motion of a heavy body of revolution on a horizontal plane”, Regul. Chaotic Dyn., 7 (2002), 119–130 | DOI | MR | Zbl

[3] Cohen R. J., “The tippe top revisited”, Amer. J. Phys., 45 (1977), 12–17 | DOI

[4] Del Campo A. R., “Tippe top (topsy-turnee top) continued”, Amer. J. Phys., 23 (1955), 544–545 | DOI

[5] Ebenfeld S., Scheck F., “A new analysis of the tippe top: asymptotic states and {L}iapunov stability”, Ann. Physics, 243 (1995), 195–217, arXiv: chao-dyn/9501008 | DOI | MR | Zbl

[6] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, McGraw-Hill, New York–Toronto–London, 1953

[7] Glad S. T., Petersson D., Rauch-Wojciechowski S., “Phase space of rolling solutions of the tippe top”, SIGMA, 3 (2007), 041, 14 pp., arXiv: nlin.SI/0703016 | DOI | MR | Zbl

[8] Jones E., Oliphant T., Peterson P., Open source scientific tools for {Python}, http://www.scipy.org

[9] Karapetyan A. V., “Qualitative investigation of the dynamics of a top on a plane with friction”, J. Appl. Math. Mech., 55 (1991), 563–565 | DOI | MR | Zbl

[10] Karapetyan A. V., Rubanovskii V. N., “On the stability of stationary motions of non-conservative mechanical systems”, J. Appl. Math. Mech., 50 (1986), 30–35 | DOI | Zbl

[11] Or A. C., “The dynamics of a tippe top”, SIAM J. Appl. Math., 54 (1994), 597–609 | DOI | MR | Zbl

[12] Rauch-Wojciechowski S., What does it mean to explain the rising of the tippe top?, Regul. Chaotic Dyn., 13 (2008), 316–331 | DOI | MR | Zbl

[13] Rauch-Wojciechowski S., Sköldstam M., Glad T., “Mathematical analysis of the tippe top”, Regul. Chaotic Dyn., 10 (2005), 333–362 | DOI | MR | Zbl

[14] Rutstam N., Study of equations for tippe top and related rigid bodies, {L}inköping Studies in Science and Technology, Theses No 1106, Matematiska Institutionen, Linköpings Universitet, 2010 http://swepub.kb.se/bib/swepub:oai:DiVA.org:liu-60835

[15] Rutstam N., “Tippe top equations and equations for the related mechanical systems”, SIGMA, 8 (2012), 019, 22 pp., arXiv: 1204.1123 | DOI | MR | Zbl

[16] Rutstam N., “High frequency behavior of a rolling ball and simplification of the separation equation”, Regul. Chaotic Dyn., 18 (2013), 226–236 | DOI | MR | Zbl

[17] Sturm C., “Mémoire sur la résolution des équations numériques”, Bull. de Ferussac, 11 (1829), 419–425

[18] Ueda T., Sasaki K., Watanabe S., “Motion of the tippe top: gyroscopic balance condition and stability”, SIAM J. Appl. Dyn. Syst., 4 (2005), 1159–1194, arXiv: physics/0507198 | DOI | MR | Zbl