@article{SIGMA_2014_10_a15,
author = {Jean-Philippe Michel and Fabian Radoux and Josef \v{S}ilhan},
title = {Second {Order} {Symmetries} of the {Conformal} {Laplacian}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/}
}
TY - JOUR AU - Jean-Philippe Michel AU - Fabian Radoux AU - Josef Šilhan TI - Second Order Symmetries of the Conformal Laplacian JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/ LA - en ID - SIGMA_2014_10_a15 ER -
Jean-Philippe Michel; Fabian Radoux; Josef Šilhan. Second Order Symmetries of the Conformal Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/
[1] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl
[2] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl
[3] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the {H}amilton–{J}acobi equation and the multiplicative separation of the {S}chrödinger equation. {II}: {F}irst integrals and symmetry operators”, J. Math. Phys., 43 (2002), 5223–5253 | DOI | MR | Zbl
[4] Boe B. D., Collingwood D. H., “A comparison theory for the structure of induced representations”, J. Algebra, 94 (1985), 511–545 | DOI | MR | Zbl
[5] Boe B. D., Collingwood D. H., “A comparison theory for the structure of induced representations, {II}”, Math. Z., 190 (1985), 1–11 | DOI | MR | Zbl
[6] Bonanos S., Riemannian geometry and tensor calculus (Mathematica package), Version 3.8.5, , 2012 http://www.inp.demokritos.gr/s̃bonano/RGTC/
[7] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “Symmetry and separation of variables for the {H}elmholtz and {L}aplace equations”, Nagoya Math. J., 60 (1976), 35–80 | MR | Zbl
[8] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “{$R$}-separable coordinates for three-dimensional complex {R}iemannian spaces”, Trans. Amer. Math. Soc., 242 (1978), 355–376 | DOI | MR | Zbl
[9] Čap A., Šilhan J., “Equivariant quantizations for {AHS}-structures”, Adv. Math., 224 (2010), 1717–1734, arXiv: 0904.3278 | DOI | MR
[10] Čap A., Slovák J., Souček V., “Bernstein–{G}elfand–{G}elfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl
[11] Carter B., “Killing tensor quantum numbers and conserved currents in curved space”, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR
[12] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029, arXiv: math.DG/9902032 | DOI | MR | Zbl
[13] Duval C., Ovsienko V., “Conformally equivariant quantum {H}amiltonians”, Selecta Math. (N.S.), 7 (2001), 291–320, arXiv: math.DG/9801122 | DOI | MR | Zbl
[14] Duval C., Valent G., “Quantum integrability of quadratic {K}illing tensors”, J. Math. Phys., 46 (2005), 053516, 22 pp., arXiv: math-ph/0412059 | DOI | MR | Zbl
[15] Eastwood M., “Higher symmetries of the {L}aplacian”, Ann. of Math., 161 (2005), 1645–1665, arXiv: hep-th/0206233 | DOI | MR | Zbl
[16] Eastwood M., Leistner T., “Higher symmetries of the square of the {L}aplacian”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 319–338, arXiv: math.DG/0610610 | DOI | MR | Zbl
[17] Fegan H. D., “Conformally invariant first order differential operators”, Quart. J. Math. Oxford (2), 27 (1976), 371–378 | DOI | MR | Zbl
[18] Gover A. R., Šilhan J., “Higher symmetries of the conformal powers of the {L}aplacian on conformally flat manifolds”, J. Math. Phys., 53 (2012), 032301, 26 pp., arXiv: 0911.5265 | DOI | MR | Zbl
[19] Kalnins E. G., Miller W. (Jr.), “Intrinsic characterisation of orthogonal {$R$} separation for {L}aplace equations”, J. Phys. A: Math. Gen., 15 (1982), 2699–2709 | DOI | MR | Zbl
[20] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 http://www.emis.de/monographs/KSM/ | MR
[21] Kozaki H., Koike T., Ishihara H., “Exactly solvable strings in {M}inkowski spacetime”, Classical Quantum Gravity, 27 (2010), 105006, 10 pp., arXiv: 0907.2273 | DOI | MR | Zbl
[22] Lecomte P. B. A., “Towards projectively equivariant quantization”, Progr. Theoret. Phys. Suppl., 144 (2001), 125–132 | DOI | MR | Zbl
[23] Loubon Djounga S. E., “Conformally invariant quantization at order three”, Lett. Math. Phys., 64 (2003), 203–212 | DOI | MR | Zbl
[24] Mathonet P., Radoux F., “On natural and conformally equivariant quantizations”, J. Lond. Math. Soc., 80 (2009), 256–272, arXiv: 0707.1412 | DOI | MR | Zbl
[25] Mathonet P., Radoux F., “Existence of natural and conformally invariant quantizations of arbitrary symbols”, J. Nonlinear Math. Phys., 17 (2010), 539–556, arXiv: 0811.3710 | DOI | MR | Zbl
[26] Michel J.-P., “Higher symmetries of {L}aplacian via quantization”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1107.5840
[27] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl
[28] Perelomov A. M., Integrable systems of classical mechanics and {L}ie algebras, v. I, Birkhäuser Verlag, Basel, 1990 | DOI | MR | Zbl
[29] Radoux F., “An explicit formula for the natural and conformally invariant quantization”, Lett. Math. Phys., 89 (2009), 249–263, arXiv: 0902.1543 | DOI | MR | Zbl
[30] Šilhan J., “Conformally invariant quantization — towards the complete classification”, Differential Geom. Appl., 33, suppl. (2014), 162–176, arXiv: 0903.4798 | DOI | MR
[31] Vlasáková Z., Symmetries of {CR} sub-{L}aplacian, arXiv: 1201.6219