Second Order Symmetries of the Conformal Laplacian
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(M,{\rm g})$ be an arbitrary pseudo-Riemannian manifold of dimension at least $3$. We determine the form of all the conformal symmetries of the conformal (or Yamabe) Laplacian on $(M,{\rm g})$, which are given by differential operators of second order. They are constructed from conformal Killing $2$-tensors satisfying a natural and conformally invariant condition. As a consequence, we get also the classification of the second order symmetries of the conformal Laplacian. Our results generalize the ones of Eastwood and Carter, which hold on conformally flat and Einstein manifolds respectively. We illustrate our results on two families of examples in dimension three.
Keywords: Laplacian; quantization; conformal geometry; separation of variables.
@article{SIGMA_2014_10_a15,
     author = {Jean-Philippe Michel and Fabian Radoux and Josef \v{S}ilhan},
     title = {Second {Order} {Symmetries} of the {Conformal} {Laplacian}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/}
}
TY  - JOUR
AU  - Jean-Philippe Michel
AU  - Fabian Radoux
AU  - Josef Šilhan
TI  - Second Order Symmetries of the Conformal Laplacian
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/
LA  - en
ID  - SIGMA_2014_10_a15
ER  - 
%0 Journal Article
%A Jean-Philippe Michel
%A Fabian Radoux
%A Josef Šilhan
%T Second Order Symmetries of the Conformal Laplacian
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/
%G en
%F SIGMA_2014_10_a15
Jean-Philippe Michel; Fabian Radoux; Josef Šilhan. Second Order Symmetries of the Conformal Laplacian. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a15/

[1] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl

[2] Ballesteros Á., Enciso A., Herranz F. J., Ragnisco O., Riglioni D., “Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability”, Ann. Physics, 326 (2011), 2053–2073, arXiv: 1102.5494 | DOI | MR | Zbl

[3] Benenti S., Chanu C., Rastelli G., “Remarks on the connection between the additive separation of the {H}amilton–{J}acobi equation and the multiplicative separation of the {S}chrödinger equation. {II}: {F}irst integrals and symmetry operators”, J. Math. Phys., 43 (2002), 5223–5253 | DOI | MR | Zbl

[4] Boe B. D., Collingwood D. H., “A comparison theory for the structure of induced representations”, J. Algebra, 94 (1985), 511–545 | DOI | MR | Zbl

[5] Boe B. D., Collingwood D. H., “A comparison theory for the structure of induced representations, {II}”, Math. Z., 190 (1985), 1–11 | DOI | MR | Zbl

[6] Bonanos S., Riemannian geometry and tensor calculus (Mathematica package), Version 3.8.5, , 2012 http://www.inp.demokritos.gr/s̃bonano/RGTC/

[7] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “Symmetry and separation of variables for the {H}elmholtz and {L}aplace equations”, Nagoya Math. J., 60 (1976), 35–80 | MR | Zbl

[8] Boyer C. P., Kalnins E. G., Miller W. (Jr.), “{$R$}-separable coordinates for three-dimensional complex {R}iemannian spaces”, Trans. Amer. Math. Soc., 242 (1978), 355–376 | DOI | MR | Zbl

[9] Čap A., Šilhan J., “Equivariant quantizations for {AHS}-structures”, Adv. Math., 224 (2010), 1717–1734, arXiv: 0904.3278 | DOI | MR

[10] Čap A., Slovák J., Souček V., “Bernstein–{G}elfand–{G}elfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl

[11] Carter B., “Killing tensor quantum numbers and conserved currents in curved space”, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR

[12] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029, arXiv: math.DG/9902032 | DOI | MR | Zbl

[13] Duval C., Ovsienko V., “Conformally equivariant quantum {H}amiltonians”, Selecta Math. (N.S.), 7 (2001), 291–320, arXiv: math.DG/9801122 | DOI | MR | Zbl

[14] Duval C., Valent G., “Quantum integrability of quadratic {K}illing tensors”, J. Math. Phys., 46 (2005), 053516, 22 pp., arXiv: math-ph/0412059 | DOI | MR | Zbl

[15] Eastwood M., “Higher symmetries of the {L}aplacian”, Ann. of Math., 161 (2005), 1645–1665, arXiv: hep-th/0206233 | DOI | MR | Zbl

[16] Eastwood M., Leistner T., “Higher symmetries of the square of the {L}aplacian”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 319–338, arXiv: math.DG/0610610 | DOI | MR | Zbl

[17] Fegan H. D., “Conformally invariant first order differential operators”, Quart. J. Math. Oxford (2), 27 (1976), 371–378 | DOI | MR | Zbl

[18] Gover A. R., Šilhan J., “Higher symmetries of the conformal powers of the {L}aplacian on conformally flat manifolds”, J. Math. Phys., 53 (2012), 032301, 26 pp., arXiv: 0911.5265 | DOI | MR | Zbl

[19] Kalnins E. G., Miller W. (Jr.), “Intrinsic characterisation of orthogonal {$R$} separation for {L}aplace equations”, J. Phys. A: Math. Gen., 15 (1982), 2699–2709 | DOI | MR | Zbl

[20] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 http://www.emis.de/monographs/KSM/ | MR

[21] Kozaki H., Koike T., Ishihara H., “Exactly solvable strings in {M}inkowski spacetime”, Classical Quantum Gravity, 27 (2010), 105006, 10 pp., arXiv: 0907.2273 | DOI | MR | Zbl

[22] Lecomte P. B. A., “Towards projectively equivariant quantization”, Progr. Theoret. Phys. Suppl., 144 (2001), 125–132 | DOI | MR | Zbl

[23] Loubon Djounga S. E., “Conformally invariant quantization at order three”, Lett. Math. Phys., 64 (2003), 203–212 | DOI | MR | Zbl

[24] Mathonet P., Radoux F., “On natural and conformally equivariant quantizations”, J. Lond. Math. Soc., 80 (2009), 256–272, arXiv: 0707.1412 | DOI | MR | Zbl

[25] Mathonet P., Radoux F., “Existence of natural and conformally invariant quantizations of arbitrary symbols”, J. Nonlinear Math. Phys., 17 (2010), 539–556, arXiv: 0811.3710 | DOI | MR | Zbl

[26] Michel J.-P., “Higher symmetries of {L}aplacian via quantization”, Ann. Inst. Fourier (Grenoble) (to appear) , arXiv: 1107.5840

[27] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl

[28] Perelomov A. M., Integrable systems of classical mechanics and {L}ie algebras, v. I, Birkhäuser Verlag, Basel, 1990 | DOI | MR | Zbl

[29] Radoux F., “An explicit formula for the natural and conformally invariant quantization”, Lett. Math. Phys., 89 (2009), 249–263, arXiv: 0902.1543 | DOI | MR | Zbl

[30] Šilhan J., “Conformally invariant quantization — towards the complete classification”, Differential Geom. Appl., 33, suppl. (2014), 162–176, arXiv: 0903.4798 | DOI | MR

[31] Vlasáková Z., Symmetries of {CR} sub-{L}aplacian, arXiv: 1201.6219