@article{SIGMA_2014_10_a14,
author = {Tomasz Brzezi\'nski},
title = {On the {Smoothness} of the {Noncommutative} {Pillow} and {Quantum} {Teardrops}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/}
}
Tomasz Brzeziński. On the Smoothness of the Noncommutative Pillow and Quantum Teardrops. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/
[1] Bavula V., “Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized {W}eyl algebras”, Bull. Sci. Math., 120 (1996), 293–335 | MR | Zbl
[2] Bratteli O., Elliott G. A., Evans D. E., Kishimoto A., “Noncommutative spheres, {I}”, Internat. J. Math., 2 (1991), 139–166 | DOI | MR | Zbl
[3] Brzeziński T., “Circle actions on a quantum Seifert manifold”, PoS Proc. Sci., PoS(CORFU2011), 2012, 055, 10 pp., arXiv: 1203.6801
[4] Brzeziński T., Fairfax S. A., “Bundles over quantum real weighted projective spaces”, Axioms, 1 (2012), 201–225, arXiv: 1207.2313 | DOI
[5] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl
[6] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl
[7] Brzeziński T., Zieliński B., “Quantum principal bundles over quantum real projective spaces”, J. Geom. Phys., 62 (2012), 1097–1107, arXiv: 1105.5897 | DOI | MR | Zbl
[8] Da̧browski L., Grosse H., Hajac P. M., “Strong connections and {C}hern–{C}onnes pairing in the {H}opf–{G}alois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR
[9] Evans D. E., Kawahigashi Y., Quantum symmetries on operator algebras, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998 | MR
[10] Goodearl K. R., Zhang J. J., “Homological properties of quantized coordinate rings of semisimple groups”, Proc. Lond. Math. Soc. (3), 94 (2007), 647–671, arXiv: math.QA/0510420 | DOI | MR | Zbl
[11] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl
[12] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl
[13] Krähmer U., “On the {H}ochschild (co)homology of quantum homogeneous spaces”, Israel J. Math., 189 (2012), 237–266, arXiv: 0806.0267 | DOI | MR
[14] Liu L.-Y., Homological smoothness and deformations of generalized Weyl algebras, arXiv: 1304.7117
[15] McConnell J. C., Robson J. C., Noncommutative {N}oetherian rings, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[16] N{ă}st{ă}sescu C., van Oystaeyen F., Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam, 1982 | MR
[17] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl
[18] Rieffel M. A., “{$C^{\ast}$}-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl
[19] Thurston W. P., The geometry and topology of three-manifolds, Princeton University, 1980 http://www.msri.org/publications/books/gt3m/
[20] van den Bergh M., “A relation between {H}ochschild homology and cohomology for {G}orenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 ; {E}rratum, Proc. Amer. Math. Soc., 130 (2002), 2809–2810 | DOI | MR | Zbl | DOI | MR
[21] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl