On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recent results by Krähmer [Israel J. Math. 189 (2012), 237–266] on smoothness of Hopf–Galois extensions and by Liu [arxiv:1304.7117] on smoothness of generalized Weyl algebras are used to prove that the coordinate algebras of the noncommutative pillow orbifold [Internat. J. Math. 2 (1991), 139–166], quantum teardrops ${\mathcal O}({\mathbb W}{\mathbb P}_q(1,l))$ [Comm. Math. Phys. 316 (2012), 151–170], quantum lens spaces ${\mathcal O}(L_q(l;1,l))$ [Pacific J. Math. 211 (2003), 249–263], the quantum Seifert manifold ${\mathcal O}(\Sigma_q^3)$ [J. Geom. Phys. 62 (2012), 1097–1107], quantum real weighted projective planes ${\mathcal O}({\mathbb R}{\mathbb P}_q^2(l;\pm))$ [PoS Proc. Sci. (2012), PoS(CORFU2011), 055, 10 pages] and quantum Seifert lens spaces ${\mathcal O}(\Sigma_q^3(l;-))$ [Axioms 1 (2012), 201–225] are homologically smooth in the sense that as their own bimodules they admit finitely generated projective resolutions of finite length.
Keywords: smooth algebra; generalized Weyl algebra; strongly graded algebra; noncommutative pillow; quantum teardrop; quantum lens space; quantum real weighted projective plane.
@article{SIGMA_2014_10_a14,
     author = {Tomasz Brzezi\'nski},
     title = {On the {Smoothness} of the {Noncommutative} {Pillow} and {Quantum} {Teardrops}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/}
}
TY  - JOUR
AU  - Tomasz Brzeziński
TI  - On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/
LA  - en
ID  - SIGMA_2014_10_a14
ER  - 
%0 Journal Article
%A Tomasz Brzeziński
%T On the Smoothness of the Noncommutative Pillow and Quantum Teardrops
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/
%G en
%F SIGMA_2014_10_a14
Tomasz Brzeziński. On the Smoothness of the Noncommutative Pillow and Quantum Teardrops. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a14/

[1] Bavula V., “Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized {W}eyl algebras”, Bull. Sci. Math., 120 (1996), 293–335 | MR | Zbl

[2] Bratteli O., Elliott G. A., Evans D. E., Kishimoto A., “Noncommutative spheres, {I}”, Internat. J. Math., 2 (1991), 139–166 | DOI | MR | Zbl

[3] Brzeziński T., “Circle actions on a quantum Seifert manifold”, PoS Proc. Sci., PoS(CORFU2011), 2012, 055, 10 pp., arXiv: 1203.6801

[4] Brzeziński T., Fairfax S. A., “Bundles over quantum real weighted projective spaces”, Axioms, 1 (2012), 201–225, arXiv: 1207.2313 | DOI

[5] Brzeziński T., Fairfax S. A., “Quantum teardrops”, Comm. Math. Phys., 316 (2012), 151–170, arXiv: 1107.1417 | DOI | MR | Zbl

[6] Brzeziński T., Hajac P. M., “The {C}hern–{G}alois character”, C. R. Math. Acad. Sci. Paris, 338 (2004), 113–116, arXiv: math.KT/0306436 | DOI | MR | Zbl

[7] Brzeziński T., Zieliński B., “Quantum principal bundles over quantum real projective spaces”, J. Geom. Phys., 62 (2012), 1097–1107, arXiv: 1105.5897 | DOI | MR | Zbl

[8] Da̧browski L., Grosse H., Hajac P. M., “Strong connections and {C}hern–{C}onnes pairing in the {H}opf–{G}alois theory”, Comm. Math. Phys., 220 (2001), 301–331, arXiv: math.QA/9912239 | DOI | MR

[9] Evans D. E., Kawahigashi Y., Quantum symmetries on operator algebras, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1998 | MR

[10] Goodearl K. R., Zhang J. J., “Homological properties of quantized coordinate rings of semisimple groups”, Proc. Lond. Math. Soc. (3), 94 (2007), 647–671, arXiv: math.QA/0510420 | DOI | MR | Zbl

[11] Hajac P. M., “Strong connections on quantum principal bundles”, Comm. Math. Phys., 182 (1996), 579–617, arXiv: hep-th/9406129 | DOI | MR | Zbl

[12] Hong J. H., Szymański W., “Quantum lens spaces and graph algebras”, Pacific J. Math., 211 (2003), 249–263 | DOI | MR | Zbl

[13] Krähmer U., “On the {H}ochschild (co)homology of quantum homogeneous spaces”, Israel J. Math., 189 (2012), 237–266, arXiv: 0806.0267 | DOI | MR

[14] Liu L.-Y., Homological smoothness and deformations of generalized Weyl algebras, arXiv: 1304.7117

[15] McConnell J. C., Robson J. C., Noncommutative {N}oetherian rings, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001 | MR | Zbl

[16] N{ă}st{ă}sescu C., van Oystaeyen F., Graded ring theory, North-Holland Mathematical Library, 28, North-Holland Publishing Co., Amsterdam, 1982 | MR

[17] Podleś P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl

[18] Rieffel M. A., “{$C^{\ast}$}-algebras associated with irrational rotations”, Pacific J. Math., 93 (1981), 415–429 | DOI | MR | Zbl

[19] Thurston W. P., The geometry and topology of three-manifolds, Princeton University, 1980 http://www.msri.org/publications/books/gt3m/

[20] van den Bergh M., “A relation between {H}ochschild homology and cohomology for {G}orenstein rings”, Proc. Amer. Math. Soc., 126 (1998), 1345–1348 ; {E}rratum, Proc. Amer. Math. Soc., 130 (2002), 2809–2810 | DOI | MR | Zbl | DOI | MR

[21] Woronowicz S. L., “Compact matrix pseudogroups”, Comm. Math. Phys., 111 (1987), 613–665 | DOI | MR | Zbl