@article{SIGMA_2014_10_a12,
author = {Indranil Biswas and Tom\'as L. G\'omez},
title = {Semistability of {Principal} {Bundles} on {a~K\"ahler} {Manifold} with {a~Non-Connected} {Structure} {Group}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/}
}
TY - JOUR AU - Indranil Biswas AU - Tomás L. Gómez TI - Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/ LA - en ID - SIGMA_2014_10_a12 ER -
%0 Journal Article %A Indranil Biswas %A Tomás L. Gómez %T Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/ %G en %F SIGMA_2014_10_a12
Indranil Biswas; Tomás L. Gómez. Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/
[1] Anchouche B., Biswas I., “Einstein–{H}ermitian connections on polystable principal bundles over a compact {K}ähler manifold”, Amer. J. Math., 123 (2001), 207–228 | DOI | MR | Zbl
[2] Atiyah M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[3] Behrend K. A., “Semi-stability of reductive group schemes over curves”, Math. Ann., 301 (1995), 281–305 | DOI | MR | Zbl
[4] Biswas I., Subramanian S., “Semistability and finite maps”, Arch. Math. (Basel), 93 (2009), 437–443 | DOI | MR | Zbl
[5] Gómez T. L., Langer A., Schmitt A. H. W., Sols I., “Moduli spaces for principal bundles in large characteristic”, Teichmüller Theory and Moduli Problem, Ramanujan Math. Soc. Lect. Notes Ser., 10, Ramanujan Math. Soc., Mysore, 2010, 281–371, arXiv: math.AG/0506511 | MR
[6] Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl
[7] Koszul J. L., Lectures on fibre bundles and differential geometry, Tata Institute of Fundamental Research Lectures on Mathematics, 20, Tata Institute of Fundamental Research, Bombay, 1960 http://www.math.tifr.res.in/p̃ubl/ln/tifr20.pdf | MR
[8] Ramanathan A., “Moduli for principal bundles”, Algebraic Geometry, {P}roc. {S}ummer {M}eeting ({U}niv. {C}openhagen, {C}openhagen, 1978), Lecture Notes in Math., 732, Springer, Berlin, 1979, 527–533 | DOI | MR
[9] Ramanathan A., “Moduli for principal bundles over algebraic curves, I”, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301–328 | DOI | MR | Zbl
[10] Ramanathan A., “Moduli for principal bundles over algebraic curves, II”, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 421–449 | DOI | MR | Zbl
[11] Ramanathan A., Subramanian S., “Einstein–{H}ermitian connections on principal bundles and stability”, J. Reine Angew. Math., 390 (1988), 21–31 | DOI | MR | Zbl
[12] Springer T. A., Linear algebraic groups, Progress in Mathematics, 9, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 1998 | DOI | MR | Zbl