Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate principal $G$-bundles on a compact Kähler manifold, where $G$ is a complex algebraic group such that the connected component of it containing the identity element is reductive. Defining (semi)stability of such bundles, it is shown that a principal $G$-bundle $E_G$ admits an Einstein–Hermitian connection if and only if $E_G$ is polystable. We give an equivalent formulation of the (semi)stability condition. A question is to compare this definition with that of [Gómez T. L., Langer A., Schmitt A. H. W., Sols I., Ramanujan Math. Soc. Lect. Notes Ser., Vol. 10, Ramanujan Math. Soc., Mysore, 2010, 281–371].
Keywords: Einstein–Hermitian connection; principal bundle; parabolic subgroup; (semi)stability.
@article{SIGMA_2014_10_a12,
     author = {Indranil Biswas and Tom\'as L. G\'omez},
     title = {Semistability of {Principal} {Bundles} on {a~K\"ahler} {Manifold} with {a~Non-Connected} {Structure} {Group}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/}
}
TY  - JOUR
AU  - Indranil Biswas
AU  - Tomás L. Gómez
TI  - Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/
LA  - en
ID  - SIGMA_2014_10_a12
ER  - 
%0 Journal Article
%A Indranil Biswas
%A Tomás L. Gómez
%T Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/
%G en
%F SIGMA_2014_10_a12
Indranil Biswas; Tomás L. Gómez. Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a12/

[1] Anchouche B., Biswas I., “Einstein–{H}ermitian connections on polystable principal bundles over a compact {K}ähler manifold”, Amer. J. Math., 123 (2001), 207–228 | DOI | MR | Zbl

[2] Atiyah M. F., “Complex analytic connections in fibre bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl

[3] Behrend K. A., “Semi-stability of reductive group schemes over curves”, Math. Ann., 301 (1995), 281–305 | DOI | MR | Zbl

[4] Biswas I., Subramanian S., “Semistability and finite maps”, Arch. Math. (Basel), 93 (2009), 437–443 | DOI | MR | Zbl

[5] Gómez T. L., Langer A., Schmitt A. H. W., Sols I., “Moduli spaces for principal bundles in large characteristic”, Teichmüller Theory and Moduli Problem, Ramanujan Math. Soc. Lect. Notes Ser., 10, Ramanujan Math. Soc., Mysore, 2010, 281–371, arXiv: math.AG/0506511 | MR

[6] Kobayashi S., Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15, Princeton University Press, Princeton, NJ, 1987 | MR | Zbl

[7] Koszul J. L., Lectures on fibre bundles and differential geometry, Tata Institute of Fundamental Research Lectures on Mathematics, 20, Tata Institute of Fundamental Research, Bombay, 1960 http://www.math.tifr.res.in/p̃ubl/ln/tifr20.pdf | MR

[8] Ramanathan A., “Moduli for principal bundles”, Algebraic Geometry, {P}roc. {S}ummer {M}eeting ({U}niv. {C}openhagen, {C}openhagen, 1978), Lecture Notes in Math., 732, Springer, Berlin, 1979, 527–533 | DOI | MR

[9] Ramanathan A., “Moduli for principal bundles over algebraic curves, I”, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 301–328 | DOI | MR | Zbl

[10] Ramanathan A., “Moduli for principal bundles over algebraic curves, II”, Proc. Indian Acad. Sci. Math. Sci., 106 (1996), 421–449 | DOI | MR | Zbl

[11] Ramanathan A., Subramanian S., “Einstein–{H}ermitian connections on principal bundles and stability”, J. Reine Angew. Math., 390 (1988), 21–31 | DOI | MR | Zbl

[12] Springer T. A., Linear algebraic groups, Progress in Mathematics, 9, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 1998 | DOI | MR | Zbl