@article{SIGMA_2014_10_a115,
author = {Marta Mazzocco},
title = {Non-Symmetric {Basic} {Hypergeometric} {Polynomials} and {Representation} {Theory} for {Confluent} {Cherednik} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/}
}
TY - JOUR AU - Marta Mazzocco TI - Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/ LA - en ID - SIGMA_2014_10_a115 ER -
%0 Journal Article %A Marta Mazzocco %T Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/ %G en %F SIGMA_2014_10_a115
Marta Mazzocco. Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/
[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1985, iv+55 pp. | DOI | MR
[2] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl
[3] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[4] Koornwinder T. H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl
[5] Mazzocco M., Confluences of the Painlevé equations, Cherednik algebras and $q$-Askey scheme, arXiv: 1307.6140
[6] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144, arXiv: math.QA/0001033 | MR | Zbl
[7] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR | Zbl