Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce a basic representation for the confluent Cherednik algebras $\mathcal H_{\rm V}$, $\mathcal H_{\rm III}$, $\mathcal H_{\rm III}^{D_7}$ and $\mathcal H_{\rm III}^{D_8}$ defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual $q$-Hahn, Al-Salam–Chihara, continuous big $q$-Hermite and continuous $q$-Hermite polynomials.
Keywords: DAHA; Cherednik algebra; $q$-Askey scheme; Askey–Wilson polynomials.
@article{SIGMA_2014_10_a115,
     author = {Marta Mazzocco},
     title = {Non-Symmetric {Basic} {Hypergeometric} {Polynomials} and {Representation} {Theory} for {Confluent} {Cherednik} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/}
}
TY  - JOUR
AU  - Marta Mazzocco
TI  - Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/
LA  - en
ID  - SIGMA_2014_10_a115
ER  - 
%0 Journal Article
%A Marta Mazzocco
%T Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/
%G en
%F SIGMA_2014_10_a115
Marta Mazzocco. Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a115/

[1] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1985, iv+55 pp. | DOI | MR

[2] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992:9 (1992), 171–180 | DOI | MR | Zbl

[3] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[4] Koornwinder T. H., “The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case”, SIGMA, 3 (2007), 063, 15 pp., arXiv: math.QA/0612730 | DOI | MR | Zbl

[5] Mazzocco M., Confluences of the Painlevé equations, Cherednik algebras and $q$-Askey scheme, arXiv: 1307.6140

[6] Noumi M., Stokman J. V., “Askey–Wilson polynomials: an affine Hecke algebra approach”, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111–144, arXiv: math.QA/0001033 | MR | Zbl

[7] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR | Zbl