The Freiheitssatz for Generic Poisson Algebras
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the Freiheitssatz for the variety of generic Poisson algebras.
Keywords: Freiheitssatz; Poisson algebra; generic Poisson algebra; algebraically closed algebra; polynomial identity; differential algebra.
@article{SIGMA_2014_10_a114,
     author = {Pavel S. Kolesnikov and Leonid G. Makar-Limanov and Ivan P. Shestakov},
     title = {The {Freiheitssatz} for {Generic} {Poisson} {Algebras}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a114/}
}
TY  - JOUR
AU  - Pavel S. Kolesnikov
AU  - Leonid G. Makar-Limanov
AU  - Ivan P. Shestakov
TI  - The Freiheitssatz for Generic Poisson Algebras
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a114/
LA  - en
ID  - SIGMA_2014_10_a114
ER  - 
%0 Journal Article
%A Pavel S. Kolesnikov
%A Leonid G. Makar-Limanov
%A Ivan P. Shestakov
%T The Freiheitssatz for Generic Poisson Algebras
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a114/
%G en
%F SIGMA_2014_10_a114
Pavel S. Kolesnikov; Leonid G. Makar-Limanov; Ivan P. Shestakov. The Freiheitssatz for Generic Poisson Algebras. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a114/

[1] Bokut L. A., “Theorems of imbedding in the theory of algebras”, Colloq. Math., 14 (1966), 349–353 | MR | Zbl

[2] Bokut L. A., Chen Y., Li Y., “Lyndon–Shirshov basis and anti-commutative algebras”, J. Algebra, 378 (2013), 173–183, arXiv: 1110.1264 | DOI | MR | Zbl

[3] Bokut L. A., Kolesnikov P. S., “Gröbner–Shirshov bases: from inception to the present time”, J. Math. Sci., 116 (2003), 2894–2916 | DOI | MR

[4] Cherlin G., Model theoretic algebra — selected topics, Lecture Notes in Math., 521, Springer-Verlag, Berlin–New York, 1976 | MR | Zbl

[5] Farkas D. R., “Poisson polynomial identities”, Comm. Algebra, 26 (1998), 401–416 | DOI | MR | Zbl

[6] Higman G., Scott E., Existentially closed groups, London Mathematical Society Monographs, New Series, 3, The Clarendon Press, Oxford University Press, New York, 1988 | MR

[7] Kolchin E. R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York–London, 1973 | MR | Zbl

[8] Kolesnikov P. S., “Varieties of dialgebras, and conformal algebras”, Sib. Math. J., 49 (2008), 257–272, arXiv: math.QA/0611501 | DOI | MR | Zbl

[9] Kozybaev D., Makar-Limanov L., Umirbaev U., “The Freiheitssatz and the automorphisms of free right-symmetric algebras”, Asian-Eur. J. Math., 1 (2008), 243–254, arXiv: 0807.0608 | DOI | MR | Zbl

[10] Magnus W., “Über discontinuierliche Gruppen mit einer definierenden Relation (Der Freiheitssatz)”, J. Reine Angew. Math., 163 (1930), 141–165 | DOI | Zbl

[11] Makar-Limanov L., “The skew field of fractions of the {W}eyl algebra contains a free noncommutative subalgebra”, Comm. Algebra, 11 (1983), 2003–2006 | DOI | MR | Zbl

[12] Makar-Limanov L., “Algebraically closed skew fields”, J. Algebra, 93 (1985), 117–135 | DOI | MR | Zbl

[13] Makar-Limanov L., Umirbaev U., “The Freiheitssatz for Poisson algebras”, J. Algebra, 328 (2011), 495–503, arXiv: 1004.2747 | DOI | MR | Zbl

[14] Mikhalev A. A., Shestakov I. P., “PBW-pairs of varieties of linear algebras”, Comm. Algebra, 42 (2014), 667–687 | DOI | MR | Zbl

[15] Ritt J. F., Differential algebra, American Mathematical Society Colloquium Publications, 33, Amer. Math. Soc., New York, 1950 | MR | Zbl

[16] Romanovskii N. S., “A theorem on freeness for groups with one defining relation in varieties of solvable and nilpotent groups of given degrees”, Math. USSR Sb., 89 (1972), 93–99 | DOI | MR

[17] Scott W. R., “Algebraically closed groups”, Proc. Amer. Math. Soc., 2 (1951), 118–121 | DOI | MR | Zbl

[18] Shestakov I. P., “Quantization of Poisson superalgebras and the specialty of Jordan superalgebras of Poisson type”, Algebra Logika, 32 (1993), 309–317 | DOI | MR | Zbl

[19] Shestakov I. P., “Speciality problem for Malcev algebras and Poisson Malcev algebras”, Nonassociative Algebra and its Applications (São Paulo, 1998), Lecture Notes in Pure and Appl. Math., 211, Dekker, New York, 2000, 365–371 | MR | Zbl

[20] Shirshov A. I., “Some algorithmic problems for Lie algebras”, Sib. Math. J., 3 (1962), 292–296 | MR | Zbl

[21] Shirshov A. I., “Some algorithmic problems for $\varepsilon$-algebras”, Sib. Math. J., 3 (1962), 132–137 | MR | Zbl

[22] Umirbaev U. U., “On Schreier varieties of algebras”, Algebra Logika, 33 (1994), 180–193 | DOI | MR | Zbl

[23] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings that are nearly associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York–London, 1982 | MR | Zbl