@article{SIGMA_2014_10_a113,
author = {Adrian D. Hemery and Alexander P. Veselov},
title = {Periodic {Vortex} {Streets} and {Complex} {Monodromy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a113/}
}
Adrian D. Hemery; Alexander P. Veselov. Periodic Vortex Streets and Complex Monodromy. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a113/
[1] Acheson D. J., Elementary fluid dynamics, Oxford Applied Mathematics and Computing Science Series, The Clarendon Press, Oxford University Press, New York, 1990 | MR
[2] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl
[3] Aref H., Newton P. K., Stremler M. A., Tokieda T., Vainchtein D. L., “Vortex crystals”, Adv. Appl. Mech., 39 (2003), 1–75 | DOI
[4] Aref H., Stremler M. A., “On the motion of three point vortices in a periodic strip”, J. Fluid Mech., 314 (1996), 1–25 | DOI | MR | Zbl
[5] Bartman A. B., “A new interpretation of the Adler–Moser KdV polynomials: interaction of vortices”, Nonlinear and Turbulent Processes in Physics (Kiev, 1983), v. 3, Harwood Academic Publ., Chur, 1984, 1175–1181 | MR
[6] Berest Yu. Yu., “Solution of a restricted Hadamard problem on Minkowski spaces”, Comm. Pure Appl. Math., 50 (1997), 1019–1052 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Berest Yu. Yu., Loutsenko I. M., “Huygens' principle in Minkowski spaces and soliton solutions of the Korteweg–de Vries equation”, Comm. Math. Phys., 190 (1997), 113–132, arXiv: solv-int/9704012 | DOI | MR | Zbl
[8] Chalykh O. A., Feigin M. V., Veselov A. P., “Multidimensional Baker–Akhiezer functions and Huygens' principle”, Comm. Math. Phys., 206 (1999), 533–566, arXiv: math-ph/9903019 | DOI | MR | Zbl
[9] Dubrovin B. A., Novikov S. P., “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation”, Soviet Phys. JETP, 40 (1975), 1058–1063 | MR
[10] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl
[11] Feigin M. V., Johnston D., “A class of Baker–Akhiezer arrangements”, Comm. Math. Phys., 328 (2014), 1117–1157, arXiv: 1212.3597 | DOI | MR | Zbl
[12] Felder G., Hemery A. D., Veselov A. P., “Zeros of Wronskians of Hermite polynomials and Young diagrams”, Phys. D, 241 (2012), 2131–2137, arXiv: 1005.2695 | DOI | MR | Zbl
[13] Feynman R. P., “Application of quantum mechanics to liquid helium”, Quantum Turbulence, Progress in Low Temperature Physics, 1, ed. C. J. Gorter, North-Holland, Amsterdam, 1955, 17–53 | DOI
[14] Friedman A. A., Polubarinova P. Ya., “On moving singularities of planar motion of incompressible fluid”, Geofiz. Sb., 5 (1927), 9–24 (in Russian)
[15] Gesztesy F., Weikard R., “Picard potentials and Hill's equation on a torus”, Acta Math., 176 (1996), 73–107 | DOI | MR | Zbl
[16] Gibbons J., Veselov A. P., “On the rational monodromy-free potentials with sextic growth”, J. Math. Phys., 50 (2009), 013513, 25 pp., arXiv: 0807.3501 | DOI | MR | Zbl
[17] Hemery A. D., Veselov A. P., “Whittaker–Hill equation and semifinite-gap Schrödinger operators”, J. Math. Phys., 51 (2010), 072108, 17 pp., arXiv: 0906.1697 | DOI | MR
[18] Krichever I. M., “Methods of algebraic geometry in the theory of non-linear equations”, Russian Math. Surveys, 32:6 (1977), 185–213 | DOI | MR | Zbl
[19] Krichever I. M., “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles”, Funct. Anal. Appl., 14 (1980), 282–290 | DOI | MR
[20] Lamb H., Hydrodynamics, Cambridge Mathematical Library, 6th ed., Cambridge University Press, Cambridge, 1993 | MR | Zbl
[21] Milne-Thomson L. M., Theoretical hydrodynamics, 5th ed., Macmillan, London, 1968. | Zbl
[22] Montaldi J., Soulière A., Tokieda T., “Vortex dynamics on a cylinder”, SIAM J. Appl. Dyn. Syst., 2 (2003), 417–430, arXiv: math.DS/0210028 | DOI | MR | Zbl
[23] Oblomkov A. A., “Monodromy-free Schrödinger operators with quadratically increasing potential”, Theoret. and Math. Phys., 121 (1999), 1574–1584 | DOI | MR | Zbl
[24] Smirnov A. O., “Finite-gap solutions of the Fuchsian equations”, Lett. Math. Phys., 76 (2006), 297–316, arXiv: math.CA/0310465 | DOI | MR | Zbl
[25] Stieltjes T. J., “Sur quelques théorèmes d'algèbre”, C. R. Math. Acad. Sci. Paris, 100 (1885), 439–440
[26] Stremler M. A., “On relative equilibria and integrable dynamics of point vortices in periodic domains”, Theor. Comput. Fluid Dyn., 24 (2010), 25–37 | DOI | Zbl
[27] Stremler M. A., Aref H., “Motion of three point vortices in a periodic parallelogram”, J. Fluid Mech., 392 (1999), 101–128 | DOI | MR | Zbl
[28] Taĭmanov I. A., “On the two-gap elliptic potentials”, Acta Appl. Math., 36 (1994), 119–124 | DOI | MR
[29] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. I: The Bethe Ansatz method”, Comm. Math. Phys., 235 (2003), 467–494, arXiv: math.CA/0103077 | DOI | MR | Zbl
[30] Tkachenko V. K., “On vortex lattices”, Soviet Phys. JETP, 22 (1966), 1282–1286
[31] Tokieda T., “Tourbillons dansants”, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 943–946 | DOI | MR | Zbl
[32] Treibich A., Verdier J.-L., “Solitons elliptiques”, The Grothendieck Festschrift, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 437–480 | DOI | MR | Zbl
[33] Veselov A. P., “On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy”, J. Phys. A: Math. Gen., 34 (2001), 3511–3519, arXiv: math-ph/0012040 | DOI | MR | Zbl
[34] Veselov A. P., “On Darboux–Treibich–Verdier potentials”, Lett. Math. Phys., 96 (2011), 209–216, arXiv: 1004.5355 | DOI | MR | Zbl
[35] “On integrals of the hydrodynamic equations which express vortex motions”, Philos. Mag., 33 (1867), 485–512 | DOI
[36] von Kármán Th., “Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1911, 509–517
[37] von Kármán Th., “Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1912, 547–556
[38] Whittaker E. T., “On a class of differential equations whose solutions satisfy integral equations”, Proc. Edinburgh Math. Soc., 33 (1914), 14–23 | DOI
[39] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl