Configurations of Points and the Symplectic Berry–Robbins Problem
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a new problem on configurations of points, which is a new version of a similar problem by Atiyah and Sutcliffe, except it is related to the Lie group $\operatorname{Sp}(n)$, instead of the Lie group $\operatorname{U}(n)$. Denote by $\mathfrak{h}$ a Cartan algebra of $\operatorname{Sp}(n)$, and $\Delta$ the union of the zero sets of the roots of $\operatorname{Sp}(n)$ tensored with $\mathbb{R}^3$, each being a map from $\mathfrak{h} \otimes \mathbb{R}^3 \to \mathbb{R}^3$. We wish to construct a map $(\mathfrak{h} \otimes \mathbb{R}^3) \backslash \Delta \to \operatorname{Sp}(n)/T^n$ which is equivariant under the action of the Weyl group $W_n$ of $\operatorname{Sp}(n)$ (the symplectic Berry–Robbins problem). Here, the target space is the flag manifold of $\operatorname{Sp}(n)$, and $T^n$ is the diagonal $n$-torus. The existence of such a map was proved by Atiyah and Bielawski in a more general context. We present an explicit smooth candidate for such an equivariant map, which would be a genuine map provided a certain linear independence conjecture holds. We prove the linear independence conjecture for $n=2$.
Keywords: configurations of points; symplectic; Berry–Robbins problem; equivariant map; Atiyah–Sutcliffe problem.
@article{SIGMA_2014_10_a111,
     author = {Joseph Malkoun},
     title = {Configurations of {Points} and the {Symplectic} {Berry{\textendash}Robbins} {Problem}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a111/}
}
TY  - JOUR
AU  - Joseph Malkoun
TI  - Configurations of Points and the Symplectic Berry–Robbins Problem
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a111/
LA  - en
ID  - SIGMA_2014_10_a111
ER  - 
%0 Journal Article
%A Joseph Malkoun
%T Configurations of Points and the Symplectic Berry–Robbins Problem
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a111/
%G en
%F SIGMA_2014_10_a111
Joseph Malkoun. Configurations of Points and the Symplectic Berry–Robbins Problem. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a111/

[1] Atiyah M., “The geometry of classical particles”, Surveys in Differential Geometry, Surv. Differ. Geom., 7, Int. Press, Somerville, MA, 2000, 1–15 | DOI | MR | Zbl

[2] Atiyah M., “Configurations of points”, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 359 (2001), 1375–1387 | DOI | MR | Zbl

[3] Atiyah M., Bielawski R., “Nahm's equations, configuration spaces and flag manifolds”, Bull. Braz. Math. Soc. (N.S.), 33 (2002), 157–176, arXiv: math.RT/0110112 | DOI | MR | Zbl

[4] Atiyah M., Sutcliffe P., “The geometry of point particles”, Proc. Roy. Soc. London Ser. A, 458 (2002), 1089–1115, arXiv: hep-th/0105179 | DOI | MR | Zbl

[5] Berry M. V., Robbins J. M., “Indistinguishability for quantum particles: spin, statistics and the geometric phase”, Proc. Roy. Soc. London Ser. A, 453 (1997), 1771–1790 | DOI | MR | Zbl