Mach-Type Soliton in the Novikov–Veselov Equation
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the reality condition of the solutions, one constructs the Mach-type soliton of the Novikov–Veselov equation by the minor-summation formula of the Pfaffian. We study the evolution of the Mach-type soliton and find that the amplitude of the Mach stem wave is less than two times of the one of the incident wave. It is shown that the length of the Mach stem wave is linear with time. One discusses the relations with $V$-shape initial value wave for different critical values of Miles parameter.
Keywords: Pfaffian; Mach-type soliton; Mach stem wave; $V$-shape wave.
@article{SIGMA_2014_10_a110,
     author = {Jen-Hsu Chang},
     title = {Mach-Type {Soliton} in the {Novikov{\textendash}Veselov} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a110/}
}
TY  - JOUR
AU  - Jen-Hsu Chang
TI  - Mach-Type Soliton in the Novikov–Veselov Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a110/
LA  - en
ID  - SIGMA_2014_10_a110
ER  - 
%0 Journal Article
%A Jen-Hsu Chang
%T Mach-Type Soliton in the Novikov–Veselov Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a110/
%G en
%F SIGMA_2014_10_a110
Jen-Hsu Chang. Mach-Type Soliton in the Novikov–Veselov Equation. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a110/

[1] Ablowitz M. J., Baldwin D. E., “Nonlinear shallow ocean-wave soliton interactions on flat beaches”, Phys. Rev. E, 86 (2012), 036305, 5 pp., arXiv: 1208.2904 | DOI

[2] Athorne C., Nimmo J. J. C., “On the Moutard transformation for integrable partial differential equations”, Inverse Problems, 7 (1991), 809–826 | DOI | MR | Zbl

[3] Biondini G., Chakravarty S., “Soliton solutions of the Kadomtsev–Petviashvili {II} equation”, J. Math. Phys., 47 (2006), 033514, 26 pp., arXiv: nlin.SI/0511068 | DOI | MR | Zbl

[4] Bogdanov L. V., “Veselov–Novikov equation as a natural two-dimensional generalization of the Korteweg-de Vries equation”, Theoret. and Math. Phys., 70 (1987), 219–223 | DOI | MR | Zbl

[5] Chakravarty S., Kodama Y., “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123 (2009), 83–151, arXiv: 0902.4423 | DOI | MR | Zbl

[6] Chakravarty S., Lewkow T., Maruno K. I., “On the construction of the KP line-solitons and their interactions”, Appl. Anal., 89 (2010), 529–545, arXiv: 0911.2290 | DOI | MR | Zbl

[7] Chang J. H., “On the $N$-solitons solutions in the Novikov–Veselov equation”, SIGMA, 9 (2013), 006, 13 pp., arXiv: 1206.3751 | DOI | MR | Zbl

[8] Chang J. H., The interactions of solitons in the Novikov–Veselov equation, arXiv: 1310.4027

[9] Dubrovsky V. G., Topovsky A. V., Basalaev M. Y., New exact multi line soliton and periodic solutions with constant asymptotic values at infinity of the NVN integrable nonlinear evolution equation via dibar-dressing method, arXiv: 0912.2155

[10] Grinevich P. G., “The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy”, Russ. Math. Surv., 55 (2000), 1015–1083 | DOI | MR | Zbl

[11] Grinevich P. G., Manakov S. V., “Inverse problem of scattering theory for the two-dimensional Schrödinger operator, the $\bar\partial$-method and nonlinear equations”, Funct. Anal. Appl., 20 (1986), 94–103 | DOI | MR | Zbl

[12] Hu H.-C., Lou S.-Y., “Construction of the Darboux transformaiton and solutions to the modified Nizhnik–Novikov–Veselov equation”, Chinese Phys. Lett., 21 (2004), 2073–2076 | DOI

[13] Hu H.-C., Lou S.-Y., Liu Q.-P., “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation”, Chinese Phys. Lett., 20 (2003), 1413–1415, arXiv: nlin.SI/0210012 | DOI

[14] Ishikawa M., Wakayama M., “Applications of minor-summation formula. II: Pfaffians and Schur polynomials”, J. Combin. Theory Ser. A, 88 (1999), 136–157 | DOI | MR | Zbl

[15] Kazeykina A. V., Novikov R. G., “Large time asymptotics for the Grinevich–Zakharov potentials”, Bull. Sci. Math., 135 (2011), 374–382, arXiv: 1011.4038 | DOI | MR | Zbl

[16] Kodama Y., “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43 (2010), 434004, 54 pp., arXiv: 1004.4607 | DOI | MR | Zbl

[17] Kodama Y., KP solitons and Mach reflection in shallow water, arXiv: 1210.0281

[18] Kodama Y. (UTPA, May 20–24, 2013) http://faculty.utpa.edu/kmaruno/nsfcbms-tsunami.html

[19] Kodama Y., Maruno K.-I., “$N$-soliton solutions to the DKP equation and Weyl group actions”, J. Phys. A: Math. Gen., 39 (2006), 4063–4086, arXiv: nlin.SI/0602031 | DOI | MR | Zbl

[20] Kodama Y., Oikawa M., Tsuji H., “Soliton solutions of the KP equation with $V$-shape initial waves”, J. Phys. A: Math. Theor., 42 (2009), 312001, 9 pp., arXiv: 0904.2620 | DOI | MR | Zbl

[21] Kodama Y., Williams L., “KP solitons, total positivity, and cluster algebras”, Proc. Natl. Acad. Sci. USA, 108 (2011), 8984–8989, arXiv: 1105.4170 | DOI | MR | Zbl

[22] Kodama Y., Williams L., “The Deodhar decomposition of the Grassmannian and the regularity of KP solitons”, Adv. Math., 244 (2013), 979–1032, arXiv: 1204.6446 | DOI | MR | Zbl

[23] Kodama Y., Williams L., “KP solitons and total positivity for the Grassmannian”, Invent. Math., 198 (2014), 637–699, arXiv: 1106.0023 | DOI | MR | Zbl

[24] Manakov S. V., “The method of the inverse scattering problem, and two-dimensional evolution equations”, Russian Math. Surveys, 31:5 (1976), 245–246 | MR | Zbl

[25] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl

[26] Miles J. W., “Resonantly interacting solitary waves”, J. Fluid Mech., 79 (1977), 171–179 | DOI | MR | Zbl

[27] Nimmo J. J. C., “Darboux transformations in $(2+1)$-dimensions”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations ({E}xeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 413, Kluwer Acad. Publ., Dordrecht, 1993, 183–192 | DOI | MR | Zbl

[28] Novikov S. P., Veselov A. P., “Two-dimensional Schrödinger operator: inverse scattering transform and evolutional equations”, Phys. D, 18 (1986), 267–273 | DOI | MR | Zbl

[29] Ohta Y., “Pfaffian solutions for the Veselov–Novikov equation”, J. Phys. Soc. Japan, 61 (1992), 3928–3933 | DOI | MR

[30] Veselov A. P., Novikov S. P., “Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations”, Sov. Math. Dokl., 30 (1984), 588–591 | MR | Zbl

[31] Yeh H., Li W., Kodama Y., “Mach reflection and KP solitons in shallow water”, Eur. Phys. J. ST, 185 (2010), 97–111, arXiv: 1004.0370 | DOI | MR