Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Basic notions of Dirac theory of constrained systems have their analogs in differential geometry. Combination of the two approaches gives more clear understanding of both classical and quantum mechanics, when we deal with a model with complicated structure of constraints. In this work we describe and discuss the spin fiber bundle which appeared in various mechanical models where spin is described by vector-like variable.
Keywords: semiclassical description of relativistic spin; Dirac equation; theories with constraints.
@article{SIGMA_2014_10_a11,
     author = {Alexei A. Deriglazov and Andrey M. Pupasov-Maksimov},
     title = {Geometric {Constructions} {Underlying} {Relativistic} {Description~of} {Spin} {on~the~Base} of {Non-Grassmann} {Vector-Like} {Variable}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/}
}
TY  - JOUR
AU  - Alexei A. Deriglazov
AU  - Andrey M. Pupasov-Maksimov
TI  - Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/
LA  - en
ID  - SIGMA_2014_10_a11
ER  - 
%0 Journal Article
%A Alexei A. Deriglazov
%A Andrey M. Pupasov-Maksimov
%T Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/
%G en
%F SIGMA_2014_10_a11
Alexei A. Deriglazov; Andrey M. Pupasov-Maksimov. Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/

[1] Bargmann V., Michel L., Telegdi V. L., “Precession of the polarization of particles moving in a homogeneous electromagnetic field”, Phys. Rev. Lett., 2 (1959), 435–436 | DOI

[2] Barut A. O., Bracken A. J., “Zitterbewegung and the internal geometry of the electron”, Phys. Rev. D, 23 (1981), 2454–2463 | DOI | MR

[3] Barut A. O., Thacker W., “Covariant generalization of the {Z}itterbewegung of the electron and its {${\rm SO}(4,2)$} and {${\rm SO}(3,2)$} internal algebras”, Phys. Rev. D, 31 (1985), 1386–1392 | DOI | MR

[4] Berezin F. A., Marinov M. S., “Particle spin dynamics as the Grassmann variant of classical mechanics”, Ann. Physics, 104 (1977), 336–362 | DOI | Zbl

[5] Cognola G., Vanzo L., Zerbini S., Soldati R., “On the Lagrangian formulation of a charged spinning particle in an external electromagnetic field”, Phys. Lett. B, 104 (1981), 67–69 | DOI

[6] Corben H. C., Classical and quantum theories of spinning particles, Holden-Day, San Francisco, 1968

[7] Deriglazov A. A., Classical mechanics: Hamiltonian and Lagrangian formalism, Springer, Heidelberg, 2010 | DOI | MR | Zbl

[8] Deriglazov A. A., “Nonrelativistic spin: à la {B}erezin–{M}arinov quantization on a sphere”, Modern Phys. Lett. A, 25 (2010), 2769–2777 | DOI | MR | Zbl

[9] Deriglazov A. A., “A semiclassical description of relativistic spin without the use of {G}rassmann variables and the {D}irac equation”, Ann. Physics, 327 (2012), 398–406, arXiv: 1107.0273 | DOI | MR | Zbl

[10] Deriglazov A. A., “Classical-mechanical models without observable trajectories and the {D}irac electron”, Phys. Lett. A, 377 (2012), 13–17, arXiv: 1203.5697 | DOI | MR

[11] Deriglazov A. A., “Spinning-particle model for the {D}irac equation and the relativistic {Z}itterbewegung”, Phys. Lett. A, 376 (2012), 309–313, arXiv: 1106.5228 | DOI | MR | Zbl

[12] Deriglazov A. A., “Variational problem for the {F}renkel and the {B}argmann–{M}ichel–{T}elegdi ({BMT}) equations”, Modern Phys. Lett. A, 28 (2013), 1250234, 9 pp., arXiv: 1204.2494 | DOI | MR | Zbl

[13] Deriglazov A. A., Variational problem for Hamiltonian system on ${\rm SO}(k,m)$ {L}ie–{P}oisson manifold and dynamics of semiclassical spin, arXiv: 1211.1219

[14] Deriglazov A. A., Evdokimov K. E., “Local symmetries and the {N}oether identities in the {H}amiltonian framework”, Internat. J. Modern Phys. A, 15 (2000), 4045–4067, arXiv: hep-th/9912179 | DOI | MR | Zbl

[15] Deriglazov A. A., Nersessian A., Rigid particle revisited: extrinsic curvature yields the {D}irac equation, arXiv: 1303.0483

[16] Deriglazov A. A., Pupasov-Maksimov A. M., Lagrangian for Frenkel electron and position's non-commutativity due to spin, arXiv: 1312.6247

[17] Deriglazov A. A., Rizzuti B. F., Zamudio G. P., Castro P. S., “Non-{G}rassmann mechanical model of the {D}irac equation”, J. Math. Phys., 53 (2012), 122303, 31 pp., arXiv: 1202.5757 | DOI | MR | Zbl

[18] Dirac P. A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR

[19] Foldy L. L., Wouthuysen S. A., “On the {D}irac theory of spin 1/2 particles and its non-relativistic limit”, Phys. Rev., 78 (1950), 29–36 | DOI | Zbl

[20] Frenkel J., “Die Elektrodynamik des rotierenden Elektrons”, Z. Phys., 37 (1926), 243–262 | DOI | Zbl

[21] Frenkel J., “Spinning electrons”, Nature, 117 (1926), 653–654 | DOI

[22] Gavrilov S. P., Gitman D. M., “Quantization of pointlike particles and consistent relativistic quantum mechanics”, Internat. J. Modern Phys. A, 15 (2000), 4499–4538, arXiv: hep-th/0003112 | DOI | MR | Zbl

[23] Gitman D. M., Tyutin I. V., Quantization of fields with constraints, Springer Series in Nuclear and Particle Physics, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl

[24] Grassberger P., “Classical charged particles with spin”, J. Phys. A: Math. Gen., 11 (1978), 1221–1226 | DOI

[25] Hanson A. J., Regge T., “The relativistic spherical top”, Ann. Physics, 87 (1974), 498–566 | DOI | MR

[26] Laroze D., Gutiérrez G., Rivera R., Yáñez J. M., “Dynamics of a rotating particle under a time-dependent potential: exact quantum solution from the classical action”, Phys. Scr., 78 (2008), 015009, 5 pp. | DOI | MR | Zbl

[27] Peletminskii A., Peletminskii S., “Lagrangian and Hamiltonian formalisms for relativistic dynamics of a charged particle with dipole moment”, Eur. Phys. J. C Part. Fields, 42 (2005), 505–517 | DOI

[28] Ramirez W. G., Deriglazov A. A., Pupasov-Maksimov A. M., Frenkel electron and a spinning body in a curved background, arXiv: 1311.5743