@article{SIGMA_2014_10_a11,
author = {Alexei A. Deriglazov and Andrey M. Pupasov-Maksimov},
title = {Geometric {Constructions} {Underlying} {Relativistic} {Description~of} {Spin} {on~the~Base} of {Non-Grassmann} {Vector-Like} {Variable}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/}
}
TY - JOUR AU - Alexei A. Deriglazov AU - Andrey M. Pupasov-Maksimov TI - Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/ LA - en ID - SIGMA_2014_10_a11 ER -
%0 Journal Article %A Alexei A. Deriglazov %A Andrey M. Pupasov-Maksimov %T Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/ %G en %F SIGMA_2014_10_a11
Alexei A. Deriglazov; Andrey M. Pupasov-Maksimov. Geometric Constructions Underlying Relativistic Description of Spin on the Base of Non-Grassmann Vector-Like Variable. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a11/
[1] Bargmann V., Michel L., Telegdi V. L., “Precession of the polarization of particles moving in a homogeneous electromagnetic field”, Phys. Rev. Lett., 2 (1959), 435–436 | DOI
[2] Barut A. O., Bracken A. J., “Zitterbewegung and the internal geometry of the electron”, Phys. Rev. D, 23 (1981), 2454–2463 | DOI | MR
[3] Barut A. O., Thacker W., “Covariant generalization of the {Z}itterbewegung of the electron and its {${\rm SO}(4,2)$} and {${\rm SO}(3,2)$} internal algebras”, Phys. Rev. D, 31 (1985), 1386–1392 | DOI | MR
[4] Berezin F. A., Marinov M. S., “Particle spin dynamics as the Grassmann variant of classical mechanics”, Ann. Physics, 104 (1977), 336–362 | DOI | Zbl
[5] Cognola G., Vanzo L., Zerbini S., Soldati R., “On the Lagrangian formulation of a charged spinning particle in an external electromagnetic field”, Phys. Lett. B, 104 (1981), 67–69 | DOI
[6] Corben H. C., Classical and quantum theories of spinning particles, Holden-Day, San Francisco, 1968
[7] Deriglazov A. A., Classical mechanics: Hamiltonian and Lagrangian formalism, Springer, Heidelberg, 2010 | DOI | MR | Zbl
[8] Deriglazov A. A., “Nonrelativistic spin: à la {B}erezin–{M}arinov quantization on a sphere”, Modern Phys. Lett. A, 25 (2010), 2769–2777 | DOI | MR | Zbl
[9] Deriglazov A. A., “A semiclassical description of relativistic spin without the use of {G}rassmann variables and the {D}irac equation”, Ann. Physics, 327 (2012), 398–406, arXiv: 1107.0273 | DOI | MR | Zbl
[10] Deriglazov A. A., “Classical-mechanical models without observable trajectories and the {D}irac electron”, Phys. Lett. A, 377 (2012), 13–17, arXiv: 1203.5697 | DOI | MR
[11] Deriglazov A. A., “Spinning-particle model for the {D}irac equation and the relativistic {Z}itterbewegung”, Phys. Lett. A, 376 (2012), 309–313, arXiv: 1106.5228 | DOI | MR | Zbl
[12] Deriglazov A. A., “Variational problem for the {F}renkel and the {B}argmann–{M}ichel–{T}elegdi ({BMT}) equations”, Modern Phys. Lett. A, 28 (2013), 1250234, 9 pp., arXiv: 1204.2494 | DOI | MR | Zbl
[13] Deriglazov A. A., Variational problem for Hamiltonian system on ${\rm SO}(k,m)$ {L}ie–{P}oisson manifold and dynamics of semiclassical spin, arXiv: 1211.1219
[14] Deriglazov A. A., Evdokimov K. E., “Local symmetries and the {N}oether identities in the {H}amiltonian framework”, Internat. J. Modern Phys. A, 15 (2000), 4045–4067, arXiv: hep-th/9912179 | DOI | MR | Zbl
[15] Deriglazov A. A., Nersessian A., Rigid particle revisited: extrinsic curvature yields the {D}irac equation, arXiv: 1303.0483
[16] Deriglazov A. A., Pupasov-Maksimov A. M., Lagrangian for Frenkel electron and position's non-commutativity due to spin, arXiv: 1312.6247
[17] Deriglazov A. A., Rizzuti B. F., Zamudio G. P., Castro P. S., “Non-{G}rassmann mechanical model of the {D}irac equation”, J. Math. Phys., 53 (2012), 122303, 31 pp., arXiv: 1202.5757 | DOI | MR | Zbl
[18] Dirac P. A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR
[19] Foldy L. L., Wouthuysen S. A., “On the {D}irac theory of spin 1/2 particles and its non-relativistic limit”, Phys. Rev., 78 (1950), 29–36 | DOI | Zbl
[20] Frenkel J., “Die Elektrodynamik des rotierenden Elektrons”, Z. Phys., 37 (1926), 243–262 | DOI | Zbl
[21] Frenkel J., “Spinning electrons”, Nature, 117 (1926), 653–654 | DOI
[22] Gavrilov S. P., Gitman D. M., “Quantization of pointlike particles and consistent relativistic quantum mechanics”, Internat. J. Modern Phys. A, 15 (2000), 4499–4538, arXiv: hep-th/0003112 | DOI | MR | Zbl
[23] Gitman D. M., Tyutin I. V., Quantization of fields with constraints, Springer Series in Nuclear and Particle Physics, Springer-Verlag, Berlin, 1990 | DOI | MR | Zbl
[24] Grassberger P., “Classical charged particles with spin”, J. Phys. A: Math. Gen., 11 (1978), 1221–1226 | DOI
[25] Hanson A. J., Regge T., “The relativistic spherical top”, Ann. Physics, 87 (1974), 498–566 | DOI | MR
[26] Laroze D., Gutiérrez G., Rivera R., Yáñez J. M., “Dynamics of a rotating particle under a time-dependent potential: exact quantum solution from the classical action”, Phys. Scr., 78 (2008), 015009, 5 pp. | DOI | MR | Zbl
[27] Peletminskii A., Peletminskii S., “Lagrangian and Hamiltonian formalisms for relativistic dynamics of a charged particle with dipole moment”, Eur. Phys. J. C Part. Fields, 42 (2005), 505–517 | DOI
[28] Ramirez W. G., Deriglazov A. A., Pupasov-Maksimov A. M., Frenkel electron and a spinning body in a curved background, arXiv: 1311.5743