Demazure Modules, Chari–Venkatesh Modules and Fusion Products
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak{g}$ be a finite-dimensional complex simple Lie algebra with highest root $\theta$. Given two non-negative integers $m$, $n$, we prove that the fusion product of $m$ copies of the level one Demazure module $D(1,\theta)$ with $n$ copies of the adjoint representation $\mathrm{ev}_0 V(\theta)$ is independent of the parameters and we give explicit defining relations. As a consequence, for $\mathfrak{g}$ simply laced, we show that the fusion product of a special family of Chari–Venkatesh modules is again a Chari–Venkatesh module. We also get a description of the truncated Weyl module associated to a multiple of $\theta$.
Keywords: current algebra; Demazure module; Chari–Venkatesh module; truncated Weyl module; fusion product.
@article{SIGMA_2014_10_a109,
     author = {Bhimarthi Ravinder},
     title = {Demazure {Modules,} {Chari{\textendash}Venkatesh} {Modules} and {Fusion} {Products}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a109/}
}
TY  - JOUR
AU  - Bhimarthi Ravinder
TI  - Demazure Modules, Chari–Venkatesh Modules and Fusion Products
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a109/
LA  - en
ID  - SIGMA_2014_10_a109
ER  - 
%0 Journal Article
%A Bhimarthi Ravinder
%T Demazure Modules, Chari–Venkatesh Modules and Fusion Products
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a109/
%G en
%F SIGMA_2014_10_a109
Bhimarthi Ravinder. Demazure Modules, Chari–Venkatesh Modules and Fusion Products. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a109/

[1] Chari V., Fourier G., Khandai T., “A categorical approach to {W}eyl modules”, Transform. Groups, 15 (2010), 517–549, arXiv: 0906.2014 | DOI | MR | Zbl

[2] Chari V., Pressley A., “Weyl modules for classical and quantum affine algebras”, Represent. Theory, 5 (2001), 191–223, arXiv: math.QA/0004174 | DOI | MR | Zbl

[3] Chari V., Shereen P., Venkatesh R., Wand J., A Steinberg type decomposition theorem for higher level Demazure modules, arXiv: 1408.4090

[4] Chari V., Venkatesh R., “Demazure modules, fusion products, and $Q$-systems”, Comm. Math. Phys. (to appear) , arXiv: 1305.2523 | DOI

[5] Feigin B., Loktev S., “On generalized {K}ostka polynomials and the quantum {V}erlinde rule”, Differential Topology, Infinite-Dimensional {L}ie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, 194, Amer. Math. Soc., Providence, RI, 1999, 61–79, arXiv: math.QA/9812093 | MR | Zbl

[6] Feigin E., “The {PBW} filtration, {D}emazure modules and toroidal current algebras”, SIGMA, 4 (2008), 070, 21 pp., arXiv: 0806.4851 | DOI | MR | Zbl

[7] Fourier G., Littelmann P., “Weyl modules, {D}emazure modules, {KR}-modules, crystals, fusion products and limit constructions”, Adv. Math., 211 (2007), 566–593, arXiv: math.RT/0509276 | DOI | MR | Zbl

[8] Garland H., “The arithmetic theory of loop algebras”, J. Algebra, 53 (1978), 480–551 | DOI | MR | Zbl

[9] Naoi K., “Weyl modules, {D}emazure modules and finite crystals for non-simply laced type”, Adv. Math., 229 (2012), 875–934, arXiv: 1012.5480 | DOI | MR | Zbl

[10] Venkatesh R., “Fusion product structure of Demazure modules”, Algebr. Represent. Theory (to appear) , arXiv: 1311.2224 | DOI