Prequantization of the Moduli Space of Flat $\mathrm{PU}(p)$-Bundles with Prescribed Boundary Holonomies
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the framework of quasi-Hamiltonian actions, we compute the obstruction to prequantization for the moduli space of flat $\mathrm{PU}(p)$-bundles over a compact orientable surface with prescribed holonomies around boundary components, where $p>2$ is prime.
Keywords: quantization; moduli space of flat connections; parabolic bundles.
@article{SIGMA_2014_10_a108,
     author = {Derek Krepski},
     title = {Prequantization of the {Moduli} {Space} of {Flat} $\mathrm{PU}(p)${-Bundles} with {Prescribed} {Boundary} {Holonomies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a108/}
}
TY  - JOUR
AU  - Derek Krepski
TI  - Prequantization of the Moduli Space of Flat $\mathrm{PU}(p)$-Bundles with Prescribed Boundary Holonomies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a108/
LA  - en
ID  - SIGMA_2014_10_a108
ER  - 
%0 Journal Article
%A Derek Krepski
%T Prequantization of the Moduli Space of Flat $\mathrm{PU}(p)$-Bundles with Prescribed Boundary Holonomies
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a108/
%G en
%F SIGMA_2014_10_a108
Derek Krepski. Prequantization of the Moduli Space of Flat $\mathrm{PU}(p)$-Bundles with Prescribed Boundary Holonomies. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a108/

[1] Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts in Mathematics, 171, Cambridge University Press, Cambridge, 2007 | DOI | MR | Zbl

[2] Alekseev A., Malkin A., Meinrenken E., “Lie group valued moment maps”, J. Differential Geom., 48 (1998), 445–495, arXiv: dg-ga/9707021 | MR | Zbl

[3] Alekseev A., Meinrenken E., “Dirac structures and {D}ixmier–{D}ouady bundles”, Int. Math. Res. Not., 2012 (2012), 904–956, arXiv: 0907.1257 | DOI | MR | Zbl

[4] Alekseev A., Meinrenken E., Woodward C., “The {V}erlinde formulas as fixed point formulas”, J. Symplectic Geom., 1 (2001), 1–46 | DOI | MR | Zbl

[5] Atiyah M. F., Bott R., “The {Y}ang–{M}ills equations over {R}iemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[6] Bismut J.-M., Labourie F., “Symplectic geometry and the {V}erlinde formulas”, Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, Surv. Differ. Geom., 5, Int. Press, Boston, MA, 1999, 97–311 | DOI | MR | Zbl

[7] Borel A., Friedman R., Morgan J. W., Almost commuting elements in compact {L}ie groups, Mem. Amer. Math. Soc., 157, 2002, x+136 pages pp., arXiv: math.GR/9907007 | DOI | MR

[8] Bott R., Tu L. W., Differential forms in algebraic topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York–Berlin, 1982 | DOI | MR | Zbl

[9] Bourbaki N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981 | MR

[10] Daskalopoulos G. D., Wentworth R. A., “Geometric quantization for the moduli space of vector bundles with parabolic structure”, Geometry, Topology and Physics ({C}ampinas, 1996), de Gruyter, Berlin, 1997, 119–155 | MR | Zbl

[11] Gawrilow E., Joswig M., “Polymake: a framework for analyzing convex polytopes”, Polytopes — Combinatorics and Computation ({O}berwolfach, 1997), DMV Sem., 29, Birkhäuser, Basel, 2000, 43–73 | DOI | MR | Zbl

[12] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl

[13] Ho N.-K., Liu C.-C. M., “Connected components of spaces of surface group representations, II”, Int. Math. Res. Not., 2005 (2005), 959–979, arXiv: math.SG/0406069 | DOI | MR | Zbl

[14] Konno H., “On the natural line bundle on the moduli space of stable parabolic bundles”, Comm. Math. Phys., 155 (1993), 311–324 | DOI | MR | Zbl

[15] Krepski D., “Pre-quantization of the moduli space of flat {$G$}-bundles over a surface”, J. Geom. Phys., 58 (2008), 1624–1637, arXiv: 0708.1269 | DOI | MR | Zbl

[16] Krepski D., Pre-quantization of the moduli space of flat {$G$}-bundles, Ph. D. Thesis, University of Toronto, 2009, arXiv: 1004.2286 | MR

[17] Krepski D., Meinrenken E., “On the {V}erlinde formulas for {${\rm SO}(3)$}-bundles”, Q. J. Math., 64 (2013), 235–252, arXiv: 1106.4854 | DOI | MR | Zbl

[18] Meinrenken E., “The basic gerbe over a compact simple {L}ie group”, Enseign. Math., 49 (2003), 307–333, arXiv: math.DG/0209194 | MR | Zbl

[19] Meinrenken E., “Twisted {$K$}-homology and group-valued moment maps”, Int. Math. Res. Not., 2012 (2012), 4563–4618, arXiv: 1008.1261 | DOI | MR | Zbl

[20] Meinrenken E., Sjamaar R., “Singular reduction and quantization”, Topology, 38 (1999), 699–762, arXiv: dg-ga/9707023 | DOI | MR | Zbl

[21] Pauly C., “Espaces de modules de fibrés paraboliques et blocs conformes”, Duke Math. J., 84 (1996), 217–235 | DOI | MR | Zbl

[22] Stembridge J., A Maple package for root systems and finite Coxeter groups, , 2004 http://www.math.lsa.umich.edu/ ̃ jrs/maple.html#coxeter

[23] Toledano Laredo V., “Positive energy representations of the loop groups of non-simply connected {L}ie groups”, Comm. Math. Phys., 207 (1999), 307–339, arXiv: math.QA/0106196 | DOI | MR | Zbl