@article{SIGMA_2014_10_a107,
author = {Vincent X. Genest and Luc Vinet},
title = {The {Generic} {Superintegrable} {System} on the $3${-Sphere} and the ${9j}$ {Symbols} of ${\mathfrak{su}(1,1)}$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a107/}
}
TY - JOUR
AU - Vincent X. Genest
AU - Luc Vinet
TI - The Generic Superintegrable System on the $3$-Sphere and the ${9j}$ Symbols of ${\mathfrak{su}(1,1)}$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2014
VL - 10
UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a107/
LA - en
ID - SIGMA_2014_10_a107
ER -
%0 Journal Article
%A Vincent X. Genest
%A Luc Vinet
%T The Generic Superintegrable System on the $3$-Sphere and the ${9j}$ Symbols of ${\mathfrak{su}(1,1)}$
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a107/
%G en
%F SIGMA_2014_10_a107
Vincent X. Genest; Luc Vinet. The Generic Superintegrable System on the $3$-Sphere and the ${9j}$ Symbols of ${\mathfrak{su}(1,1)}$. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a107/
[1] Ališauskas S., “The triple sum formulas for {$9j$} coefficients of {${\rm SU}(2)$} and {${\rm u}_q(2)$}”, J. Math. Phys., 41 (2000), 7589–7610, arXiv: math.QA/9912142 | DOI | MR | Zbl
[2] Ališauskas S. J., Jucys A. P., “Weight lowering operators and the multiplicity-free isoscalar factors for the group {$R_{5}$}”, J. Math. Phys., 12 (1971), 594–605 | DOI | MR | Zbl
[3] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[4] Arfken G. B., Weber H. J., Mathematical methods for physicists, 5th ed., Harcourt/Academic Press, Burlington, MA, 2001 | MR
[5] Bonzom V., Fleury P., “Asymptotics of {W}igner {$3nj$}-symbols with small and large angular momenta: an elementary method”, J. Phys. A: Math. Theor., 45 (2012), 075202, 20 pp., arXiv: 1108.1569 | DOI | MR | Zbl
[6] Diaconis P., Griffiths R., “An introduction to multivariate {K}rawtchouk polynomials and their applications”, J. Statist. Plann. Inference, 154 (2014), 39–53, arXiv: 1309.0112 | DOI | MR | Zbl
[7] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | DOI | MR | Zbl
[8] Genest V. X., Vinet L., Zhedanov A., “The multivariate {K}rawtchouk polynomials as matrix elements of the rotation group representations on oscillator states”, J. Phys. A: Math. Gen., 46 (2013), 505203, 24 pp., arXiv: 1306.4256 | DOI | MR | Zbl
[9] Genest V. X., Vinet L., Zhedanov A., “Superintegrability in two dimensions and the {R}acah–{W}ilson algebra”, Lett. Math. Phys., 104 (2014), 931–952, arXiv: 1307.5539 | DOI | MR | Zbl
[10] Granovskiĭ Ya. I., Zhednov A. S., “New construction of {$3nj$}-symbols”, J. Phys. A: Math. Gen., 26 (1993), 4339–4344 | DOI | MR | Zbl
[11] Haggard H. M., Littlejohn R. G., “Asymptotics of the {W}igner {$9j$}-symbol”, Classical Quantum Gravity, 27 (2010), 135010, 17 pp., arXiv: 0912.5384 | DOI | MR | Zbl
[12] Hoare M. R., Rahman M., “A probabilistic origin for a new class of bivariate polynomials”, SIGMA, 4 (2008), 089, 18 pp., arXiv: 0812.3879 | DOI | MR | Zbl
[13] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. {IV}: {T}he classical 3{D} {S}täckel transform and 3{D} classification theory”, J. Math. Phys., 47 (2006), 043514, 26 pp. | DOI | MR | Zbl
[14] Kalnins E. G., Miller W. (Jr.), Post S., “Two-variable {W}ilson polynomials and the generic superintegrable system on the 3-sphere”, SIGMA, 7 (2011), 051, 26 pp., arXiv: 1010.3032 | DOI | MR | Zbl
[15] Kalnins E. G., Miller W. (Jr.), Tratnik M. V., “Families of orthogonal and biorthogonal polynomials on the {$N$}-sphere”, SIAM J. Math. Anal., 22 (1991), 272–294 | DOI | MR | Zbl
[16] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their {$q$}-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[17] Koelink H. T., Van der Jeugt J., “Convolutions for orthogonal polynomials from {L}ie and quantum algebra representations”, SIAM J. Math. Anal., 29 (1998), 794–822, arXiv: q-alg/9607010 | DOI | MR | Zbl
[18] Lievens S., Van der Jeugt J., “{$3nj$}-coefficients of {${\rm su}(1,1)$} as connection coefficients between orthogonal polynomials in {$n$} variables”, J. Math. Phys., 43 (2002), 3824–3849 | DOI | MR | Zbl
[19] Lievens S., Van der Jeugt J., “Realizations of coupled vectors in the tensor product of representations of {$\mathfrak{su}(1,1)$} and {$\mathfrak{su}(2)$}”, J. Comput. Appl. Math., 160 (2003), 191–208 | DOI | MR | Zbl
[20] Miller W. (Jr.), Lie theory and special functions, Mathematics in Science and Engineering, 43, Academic Press, New York–London, 1968 | MR | Zbl
[21] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[22] Regge T., Williams R. M., “Discrete structures in gravity”, J. Math. Phys., 41 (2000), 3964–3984, arXiv: gr-qc/0012035 | DOI | MR | Zbl
[23] Rosengren H., “On the triple sum formula for {W}igner {$9j$}-symbols”, J. Math. Phys., 39 (1998), 6730–6744 | DOI | MR | Zbl
[24] Rosengren H., “Another proof of the triple sum formula for {W}igner {$9j$}-symbols”, J. Math. Phys., 40 (1999), 6689–6691 | DOI | MR | Zbl
[25] Rosengren H., “Multivariable orthogonal polynomials and coupling coefficients for discrete series representations”, SIAM J. Math. Anal., 30 (1999), 232–272 | DOI | MR
[26] Rudzikas Z., Theoretical atomic spectroscopy, Cambridge Monographs on Atomic Molecular and Chemical Physics, 7, Cambridge University Press, Cambridge, 2007
[27] Srinivasa Rao K., Rajeswari V., “A note on the triple sum series for the {$9j$} coefficient”, J. Math. Phys., 30 (1989), 1016–1017 | DOI | MR | Zbl
[28] Suhonen J., From nucleons to nucleus. Concepts of microscopic nuclear theory, Theoretical and Mathematical Physics, Springer, Berlin, 2007 | DOI | MR | Zbl
[29] Tratnik M. V., “Some multivariable orthogonal polynomials of the {A}skey tableau-discrete families”, J. Math. Phys., 32 (1991), 2337–2342 | DOI | MR | Zbl
[30] Van der Jeugt J., “Coupling coefficients for {L}ie algebra representations and addition formulas for special functions”, J. Math. Phys., 38 (1997), 2728–2740 | DOI | MR | Zbl
[31] Van der Jeugt J., “Hypergeometric series related to the {$9$}-{$j$} coefficient of {${\mathfrak su}(1,1)$}”, J. Comput. Appl. Math., 118 (2000), 337–351 | DOI | MR | Zbl
[32] Van der Jeugt J., “{$3nj$}-coefficients and orthogonal polynomials of hypergeometric type”, Orthogonal Polynomials and Special Functions ({L}euven, 2002), Lecture Notes in Math., 1817, eds. E. Koelink, W. Van Assche, Springer, Berlin, 2003, 25–92 | DOI | MR | Zbl
[33] Vilenkin N. Ja., Klimyk A. U., Representation of {L}ie groups and special functions, Mathematics and its Applications, 316, Kluwer Academic Publishers Group, Dordrecht, 1995 | DOI | MR
[34] Yu L., Littlejohn R. G., “Semiclassical analysis of the Wigner $9j$ symbol with small and large angular momenta”, Phys. Rev. A, 83 (2011), 052114, 14 pp., arXiv: 1104.1499 | DOI