@article{SIGMA_2014_10_a106,
author = {Andrzej Borowiec and Anna Pacho{\l}},
title = {$\kappa${-Deformations} and {Extended} $\kappa${-Minkowski} {Spacetimes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a106/}
}
Andrzej Borowiec; Anna Pachoł. $\kappa$-Deformations and Extended $\kappa$-Minkowski Spacetimes. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a106/
[1] Amelino-Camelia G., Mandanici G., Procaccini A., Kowalski-Glikman J., “Phenomenology of doubly special relativity”, Internat. J. Modern Phys. A, 20 (2005), 6007–6037, arXiv: gr-qc/0312124 | DOI | MR
[2] Amelino-Camelia G., Smolin L., “Prospects for constraining quantum gravity dispersion with near term observations”, Phys. Rev. D, 80 (2009), 084017, 14 pp., arXiv: 0906.3731 | DOI
[3] Amelino-Camelia G., Smolin L., Starodubtsev A., “Quantum symmetry, the cosmological constant and {P}lanck-scale phenomenology”, Classical Quantum Gravity, 21 (2004), 3095–3110, arXiv: hep-th/0306134 | DOI | MR | Zbl
[4] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl
[5] Aschieri P., Castellani L., “Noncommutative gravity solutions”, J. Geom. Phys., 60 (2010), 375–393, arXiv: 0906.2774 | DOI | MR | Zbl
[6] Aschieri P., Dimitrijević M., Meyer F., Schraml S., Wess J., “Twisted gauge theories”, Lett. Math. Phys., 78 (2006), 61–71, arXiv: hep-th/0603024 | DOI | MR | Zbl
[7] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl
[8] Aschieri P., Schenkel A., “Noncommutative connections on bimodules and {D}rinfeld twist deformation”, Adv. Theor. Math. Phys., 18 (2014), 513–612, arXiv: 1210.0241 | DOI | MR
[9] Ballesteros A., Herranz F. J., del Olmo M. A., Santander M., “A new “null-plane” quantum {P}oincaré algebra”, Phys. Lett. B, 351 (1995), 137–145, arXiv: q-alg/9502019 | DOI | MR | Zbl
[10] Ballesteros Á., Herranz F. J., Meusburger C., “Drinfel'd doubles for {$(2+1)$}-gravity”, Classical Quantum Gravity, 30 (2013), 155012, 20 pp., arXiv: 1303.3080 | DOI | MR | Zbl
[11] Ballesteros A., Herranz F. J., Meusburger C., “A {$(2+1)$} non-commutative {D}rinfel'd double spacetime with cosmological constant”, Phys. Lett. B, 732 (2014), 201–209, arXiv: 1402.2884 | DOI | MR
[12] Ballesteros Á., Herranz F. J., Meusburger C., Naranjo P., “Twisted {$(2+1)$} {$\kappa$}-{A}d{S} algebra, {D}rinfel'd doubles and non-commutative spacetimes”, SIGMA, 10 (2014), 052, 26 pp., arXiv: 1403.4773 | DOI | MR | Zbl
[13] Ballesteros A., Herranz F. J., Pereña C. M., “Null-plane quantum universal {$R$}-matrix”, Phys. Lett. B, 391 (1997), 71–77, arXiv: q-alg/9607009 | DOI | MR
[14] Ballesteros A., Herranz F. J., Bruno N. R., “Quantum (anti)de Sitter algebras and generalizations of the kappa-Minkowski space”, Proceedings of 11th International Conference on Symmetry Methods in Physics (June 21–24, 2004, Prague), Joint Institute for Nuclear Research, Dubna, 2004, 1–20, arXiv: hep-th/0409295 | MR
[15] Bonneau P., Flato M., Gerstenhaber M., Pinczon G., “The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations”, Comm. Math. Phys., 161 (1994), 125–156 | DOI | MR | Zbl
[16] Bonneau P., Flato M., Pinczon G., “A natural and rigid model of quantum groups”, Lett. Math. Phys., 25 (1992), 75–84 | DOI | MR | Zbl
[17] Borowiec A., Gupta K. S., Meljanac S., Pachoł A., “Constraints on the quantum gravity scale from $\kappa$-Minkowski spacetime”, Europhys. Lett., 92 (2010), 20006, 6 pp., arXiv: 0912.3299 | DOI
[18] Borowiec A., Lukierski J., Pachoł A., “Twisting and $\kappa$-Poincaré”, J. Phys. A: Math. Theor., 47 (2014), 405203, 12 pp., arXiv: 1312.7807 | DOI | MR | Zbl
[19] Borowiec A., Lukierski J., Tolstoy V. N., “Jordanian quantum deformations of {$D=4$} anti-de {S}itter and {P}oincaré superalgebras”, Eur. Phys. J. C, 44 (2005), 139–145, arXiv: hep-th/0412131 | DOI | MR | Zbl
[20] Borowiec A., Lukierski J., Tolstoy V. N., “On twist quantizations of {$D=4$} {L}orentz and {P}oincaré algebras”, Czechoslovak J. Phys., 55 (2005), 1351–1356, arXiv: hep-th/0510154 | DOI | MR
[21] Borowiec A., Lukierski J., Tolstoy V. N., “Jordanian twist quantization of {$D=4$} {L}orentz and {P}oincaré algebras and {$D=3$} contraction limit”, Eur. Phys. J. C, 48 (2006), 633–639, arXiv: hep-th/0604146 | DOI | MR | Zbl
[22] Borowiec A., Lukierski J., Tolstoy V. N., “Quantum deformations of {$D=4$} {L}orentz algebra revisited: twistings of {$q$}-deformation”, Eur. Phys. J. C, 57 (2008), 601–611, arXiv: 0804.3305 | DOI | MR | Zbl
[23] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI
[24] Borowiec A., Pachoł A., “{$\kappa$}-{M}inkowski spacetimes and {DSR} algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl
[25] Borowiec A., Pachoł A., “The classical basis for the {$\kappa$}-{P}oincaré {H}opf algebra and doubly special relativity theories”, J. Phys. A: Math. Theor., 43 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl
[26] Borowiec A., Pachoł A., “Unified description for $\kappa$-deformations of orthogonal groups”, Eur. Phys. J. C, 74 (2014), 2812, 9 pp., arXiv: 1311.4499 | DOI
[27] Bruno N. R., Amelino-Camelia G., Kowalski-Glikman J., “Deformed boost transformations that saturate at the Planck scale”, Phys. Lett. B, 522 (2001), 133–138, arXiv: hep-th/0107039 | DOI | Zbl
[28] Bu J.-G., Kim H.-C., Lee Y., Vac C. H., Yee J. H., “{$\kappa$}-deformed spacetime from twist”, Phys. Lett. B, 665 (2008), 95–99, arXiv: hep-th/0611175 | DOI | MR
[29] Chari V., Pressley A., A guide to quantum groups, Cambridge University Press, Cambridge, 1994 | MR | Zbl
[30] D'Andrea F., “Spectral geometry of {$\kappa$}-{M}inkowski space”, J. Math. Phys., 47 (2006), 062105, 19 pp., arXiv: hep-th/0503012 | DOI | MR | Zbl
[31] Daszkiewicz M., “Generalized twist deformations of {P}oincaré and {G}alilei {H}opf algebras”, Rep. Math. Phys., 63 (2009), 263–277, arXiv: 0812.1613 | DOI | MR | Zbl
[32] Daszkiewicz M., Imiłkowska K., Kowalski-Glikman J., Nowak S., “Scalar field theory on {$\kappa$}-{M}inkowski space-time and doubly special relativity”, Internat. J. Modern Phys. A, 20 (2005), 4925–4940, arXiv: hep-th/0410058 | DOI | MR | Zbl
[33] Daszkiewicz M., Lukierski J., Woronowicz M., “{$\kappa$}-deformed statistics and classical four-momentum addition law”, Modern Phys. Lett. A, 23 (2008), 653–665, arXiv: hep-th/0703200 | DOI | MR | Zbl
[34] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative {$\kappa$}-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR
[35] Daszkiewicz M., Lukierski J., Woronowicz M., “{$\kappa$}-deformed oscillators, the choice of star product and free {$\kappa$}-deformed quantum fields”, J. Phys. A: Math. Theor., 42 (2009), 355201, 18 pp., arXiv: 0807.1992 | DOI | MR | Zbl
[36] de Graaf W. A., “Classification of solvable {L}ie algebras”, Experiment. Math., 14 (2005), 15–25, arXiv: math.RA/0404071 | DOI | MR | Zbl
[37] Dimitrijević M., Jonke L., Möller L., Tsouchnika E., Wess J., Wohlgenannt M., “Deformed field theory on {$\kappa$}-spacetime”, Eur. Phys. J. C, 31 (2003), 129–138, arXiv: hep-th/0307149 | DOI | MR | Zbl
[38] Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[39] Drinfel'd V. G., “Quasi-{H}opf algebras”, Leningrad Math. J., 1 (1989), 1419–1457 | MR
[40] Durhuus B., Sitarz A., “Star product realizations of {$\kappa$}-{M}inkowski space”, J. Noncommut. Geom., 7 (2013), 605–645, arXiv: 1104.0206 | DOI | MR | Zbl
[41] Freidel L., Kowalski-Glikman J., Nowak S., “Field theory on {$\kappa$}-{M}inkowski space revisited: {N}oether charges and breaking of {L}orentz symmetry”, Internat. J. Modern Phys. A, 23 (2008), 2687–2718, arXiv: 0706.3658 | DOI | MR | Zbl
[42] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in {$\kappa$}-{M}inkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR
[43] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Deformed osciallator algebras and QFT in the $\kappa$-Minkowski spacetime”, Phys. Rev. D, 80 (2009), 025014, 11 pp., arXiv: 0903.2355 | DOI | MR
[44] Gupta K. S., Meljanac S., Samsarov A., “Quantum statistics and noncommutative black holes”, Phys. Rev. D, 85 (2012), 045029, 8 pp., arXiv: 1108.0341 | DOI
[45] Harikumar E., Jurić T., Meljanac S., “Geodesic equation in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 86 (2012), 045002, 8 pp., arXiv: 1203.1564 | DOI
[46] Hossenfelder S., “Minimal length scale scenarios for quantum gravity”, Living Rev. Relativity, 16 (2013), 2, 90 pp., arXiv: 1203.6191 | DOI
[47] Iochum B., Masson T., Schücker T., Sitarz A., “Compact {$\kappa$}-deformation and spectral triples”, Rep. Math. Phys., 68 (2011), 37–64, arXiv: 1004.4190 | DOI | MR | Zbl
[48] Iochum B., Masson T., Schücker T., Sitarz A., “$\kappa$-deformation and spectral triples”, Acta Phys. Polon. B Proc. Suppl., 4 (2011), 305–324, arXiv: 1107.3449 | DOI
[49] Jurčo B., Möller L., Schraml S., Schupp P., Wess J., “Construction of non-abelian gauge theories on noncommutative spaces”, Eur. Phys. J. C, 21 (2001), 383–388, arXiv: hep-th/0104153 | DOI | MR | Zbl
[50] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[51] Kosiński P., Maślanka P., “The {$\kappa$}-{W}eyl group and its algebra”, From Field Theory to Quantum Groups, World Sci. Publ., River Edge, NJ, 1996, 41–51, arXiv: q-alg/9512018 | Zbl
[52] Kovačević D., Meljanac S., “Kappa-{M}inkowski spacetime, kappa-{P}oincaré {H}opf algebra and realizations”, J. Phys. A: Math. Theor., 45 (2012), 135208, 24 pp., arXiv: 1110.0944 | DOI | MR | Zbl
[53] Kowalski-Glikman J., “Observer-independent quantum of mass”, Phys. Lett. A, 286 (2001), 391–394, arXiv: hep-th/0102098 | DOI | MR | Zbl
[54] Kulish P. P., Lyakhovsky V. D., Mudrov A. I., “Extended {J}ordanian twists for {L}ie algebras”, J. Math. Phys., 40 (1999), 4569–4586, arXiv: math.QA/9806014 | DOI | MR | Zbl
[55] Lukierski J., Lyakhovsky V. D., “Two-parameter extensions of the {$\kappa$}-{P}oincaré quantum deformation”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 281–288, arXiv: hep-th/0406155 | DOI | MR
[56] Lukierski J., Lyakhovsky V. D., Mozrzymas M., “{$\kappa$}-deformations of {$D=4$} {W}eyl and conformal symmetries”, Phys. Lett. B, 538 (2002), 375–384, arXiv: hep-th/0203182 | DOI | MR | Zbl
[57] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[58] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[59] Lukierski J., Ruegg H., Zakrzewski W. J., “Classical and quantum mechanics of free {$k$}-relativistic systems”, Ann. Physics, 243 (1995), 90–116, arXiv: hep-th/9312153 | DOI | MR | Zbl
[60] Lukierski J., Woronowicz M., “New {L}ie-algebraic and quadratic deformations of {M}inkowski space from twisted {P}oincaré symmetries”, Phys. Lett. B, 633 (2006), 116–124, arXiv: hep-th/0508083 | DOI | MR | Zbl
[61] Lyakhovsky V. D., “Twist deformations of {$\kappa$}-{P}oincaré algebra”, Rep. Math. Phys., 61 (2008), 213–220 | DOI | MR | Zbl
[62] Madore J., Schraml S., Schupp P., Wess J., “Gauge theory on noncommutative spaces”, Eur. Phys. J. C, 16 (2000), 161–167, arXiv: hep-th/0001203 | DOI | MR
[63] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[64] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9405107 | DOI | MR | Zbl
[65] Matschull H.-J., Welling M., “Quantum mechanics of a point particle in {$(2+1)$}-dimensional gravity”, Classical Quantum Gravity, 15 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl
[66] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl
[67] Meljanac S., Samsarov A., “Scalar field theory on {$\kappa$}-{M}inkowski space-time and translation and {L}orentz invariance”, Internat. J. Modern Phys. A, 26 (2011), 1439–1468, arXiv: 1007.3943 | DOI | MR | Zbl
[68] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “{$\kappa$}-{M}inkowski spacetime and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl
[69] Meljanac S., Samsarov A., Trampetić J., Wohlgenannt M., “Scalar field propagation in the $\phi^4$ kappa-Minkowski model”, J. High Energy Phys., 2011:12 (2011), 010, 23 pp., arXiv: 1111.5553 | DOI | MR
[70] Mercati F., Sitarz A., “$\kappa$-Minkowski differential calculi and star product”, PoS(CNCFG2010), PoS Proc. Sci., 2010, 030, 11 pp., arXiv: 1105.1599
[71] Meusburger C., Schroers B. J., “Generalised {C}hern–{S}imons actions for 3d gravity and {$\kappa$}-{P}oincaré symmetry”, Nuclear Phys. B, 806 (2009), 462–488, arXiv: 0805.3318 | DOI | MR | Zbl
[72] Mubarakzjanov G. M., “On solvable {L}ie algebras”, Izv. Vys. Ucheb. Zaved. Matematika, 1963, no. 1(32), 114–123 | MR
[73] Mudrov A. I., “Twisting cocycle for null-plane quantized Poincaré algebra”, J. Phys. A: Math. Gen., 31 (1998), 6219–6224, arXiv: q-alg/9711001 | DOI | MR | Zbl
[74] Ohl T., Schenkel A., “Cosmological and black hole spacetimes in twisted noncommutative gravity”, J. High Energy Phys., 2009:10 (2009), 052, 12 pp., arXiv: 0906.2730 | DOI | MR
[75] Oriti D., “Emergent non-commutative matter fields from group field theory models of quantum spacetime”, J. Phys. Conf. Ser., 174 (2009), 012047, 14 pp., arXiv: 0903.3970 | DOI
[76] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension {L}ie algebras”, J. Math. Phys., 17 (1976), 986–994 | DOI | MR | Zbl
[77] Podleś P., Woronowicz S. L., “On the classification of quantum {P}oincaré groups”, Comm. Math. Phys., 178 (1996), 61–82, arXiv: hep-th/9412059 | DOI | MR | Zbl
[78] Podleś P., Woronowicz S. L., “On the structure of inhomogeneous quantum groups”, Comm. Math. Phys., 185 (1997), 325–358, arXiv: hep-th/9412058 | DOI | MR | Zbl
[79] Popovych R. O., Boyko V. M., Nesterenko M. O., Lutfullin M. W., “Realizations of real low-dimensional {L}ie algebras”, J. Phys. A: Math. Gen., 36 (2003), 7337–7360, arXiv: math-ph/0301029 | DOI | MR | Zbl
[80] Schenkel A., Uhlemann C. F., “Field theory on curved noncommutative spacetimes”, SIGMA, 6 (2010), 061, 19 pp., arXiv: 1003.3190 | DOI | MR | Zbl
[81] Sitarz A., “Twists and spectral triples for isospectral deformations”, Lett. Math. Phys., 58 (2001), 69–79, arXiv: math.QA/0102074 | DOI | MR | Zbl
[82] Stachura P., “Towards a topological (dual of) quantum {$\kappa$}-{P}oincaré group”, Rep. Math. Phys., 57 (2006), 233–256, arXiv: hep-th/0505093 | DOI | MR | Zbl
[83] Tolstoy V. N., in honour of Jerzy Lukierski (September 27–29, 2006, Wroclaw, Poland), arXiv: 0704.0081
[84] Tolstoy V. N., “Twisted quantum deformations of Lorentz and Poincaré algebras”, {I}nvited talk at the VII International Workshop “Lie Theory and its Applications in Physics” (June 18–24, 2007, Varna, Bulgaria), arXiv: 0712.3962
[85] Young C. A. S., Zegers R., “Covariant particle statistics and intertwiners of the {$\kappa$}-deformed {P}oincaré algebra”, Nuclear Phys. B, 797 (2008), 537–549, arXiv: 0711.2206 | DOI | MR | Zbl
[86] Young C. A. S., Zegers R., “Deformation quasi-{H}opf algebras of non-semisimple type from cochain twists”, Comm. Math. Phys., 298 (2010), 585–611, arXiv: 0812.3257 | DOI | MR | Zbl
[87] Zakrzewski S., “Quantum {P}oincaré group related to the {$\kappa$}-{P}oincaré algebra”, J. Phys. A: Math. Gen., 27 (1994), 2075–2082 | DOI | MR | Zbl
[88] Zakrzewski S., “Poisson structures on {P}oincaré group”, Comm. Math. Phys., 185 (1997), 285–311, arXiv: q-alg/9602001 | DOI | MR | Zbl