$\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting
Symmetry, integrability and geometry: methods and applications, Tome 10 (2014) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Hopf algebroid structures on the Weyl algebra (phase space) are presented. We define the coproduct for the Weyl generators from Leibniz rule. The codomain of the coproduct is modified in order to obtain an algebra structure. We use the dual base to construct the target map and antipode. The notion of twist is analyzed for $\kappa$-deformed phase space in Hopf algebroid setting. It is outlined how the twist in the Hopf algebroid setting reproduces the full Hopf algebra structure of $\kappa$-Poincaré algebra. Several examples of realizations are worked out in details.
Keywords: noncommutative space; $\kappa$-Minkowski spacetime; Hopf algebroid; $\kappa$-Poincaré algebra; realizations; twist.
@article{SIGMA_2014_10_a105,
     author = {Tajron Juri\'c and Domagoj Kova\v{c}evi\'c and Stjepan Meljanac},
     title = {$\kappa${-Deformed} {Phase} {Space,} {Hopf} {Algebroid} and {Twisting}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2014},
     volume = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/}
}
TY  - JOUR
AU  - Tajron Jurić
AU  - Domagoj Kovačević
AU  - Stjepan Meljanac
TI  - $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2014
VL  - 10
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/
LA  - en
ID  - SIGMA_2014_10_a105
ER  - 
%0 Journal Article
%A Tajron Jurić
%A Domagoj Kovačević
%A Stjepan Meljanac
%T $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting
%J Symmetry, integrability and geometry: methods and applications
%D 2014
%V 10
%U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/
%G en
%F SIGMA_2014_10_a105
Tajron Jurić; Domagoj Kovačević; Stjepan Meljanac. $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/

[1] Amelino-Camelia G., “Testable scenario for relativity with minimum-length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl

[2] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent ({P}lanckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: gr-qc/0012051 | DOI | MR | Zbl

[3] Andrade F. M., Silva E. O., “Effects of quantum deformation on the spin-1/2 {A}haronov–{B}ohm problem”, Phys. Lett. B, 719 (2013), 467–471, arXiv: 1212.1944 | DOI | MR

[4] Andrade F. M., Silva E. O., Ferreira M. M. (Jr.), Rodrigues E. C., “On the {$\kappa$}-{D}irac oscillator revisited”, Phys. Lett. B, 731 (2014), 327–330, arXiv: 1312.2973 | DOI | MR

[5] Arzano M., Marcianò A., “Fock space, quantum fields, and {$\kappa$}-{P}oincaré symmetries”, Phys. Rev. D, 76 (2007), 125005, 14 pp., arXiv: hep-th/0701268 | DOI | MR

[6] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl

[7] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl

[8] Böhm G., Hopf algebroids, arXiv: 0805.3806

[9] Böhm G., Szlachányi K., “Hopf algebroids with bijective antipodes: axioms, integrals, and duals”, J. Algebra, 274 (2004), 708–750, arXiv: math.QA/0302325 | DOI | MR

[10] Bojowald M., Paily G. M., “Deformed general relativity”, Phys. Rev. D, 87 (2013), 044044, 7 pp., arXiv: 1212.4773 | DOI

[11] Borowiec A., Gupta K. S., Meljanac S., Pachoł A., “Constraints on the quantum gravity scale from $\kappa$-Minkowski spacetime”, Europhys. Lett., 92 (2010), 20006, 6 pp., arXiv: 0912.3299 | DOI

[12] Borowiec A., Lukierski J., Pachoł A., “Twisting and $\kappa$-Poincaré”, J. Phys. A: Math. Theor., 47 (2014), 405203, 12 pp., arXiv: 1312.7807 | DOI | MR | Zbl

[13] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI

[14] Borowiec A., Pachoł A., “{$\kappa$}-{M}inkowski spacetimes and {DSR} algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl

[15] Borowiec A., Pachoł A., “The classical basis for the {$\kappa$}-{P}oincaré {H}opf algebra and doubly special relativity theories”, J. Phys. A: Math. Theor., 43 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl

[16] Borowiec A., Pachoł A., “Unified description for $\kappa$-deformations of orthogonal groups”, Eur. Phys. J. C, 74 (2014), 2812, 9 pp., arXiv: 1311.4499 | DOI

[17] Bu J.-G., Kim H.-C., Yee J. H., “Differential structure on {$\kappa$}-{M}inkowski spacetime realized as module of twisted {W}eyl algebra”, Phys. Lett. B, 679 (2009), 486–490, arXiv: 0903.0040 | DOI | MR

[18] Daszkiewicz M., Lukierski J., Woronowicz M., “{$\kappa$}-deformed statistics and classical four-momentum addition law”, Modern Phys. Lett. A, 23 (2008), 653–665, arXiv: hep-th/0703200 | DOI | MR | Zbl

[19] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative {$\kappa$}-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR

[20] de Boer J., Grassi P. A., van Nieuwenhuizen P., “Non-commutative superspace from string theory”, Phys. Lett. B, 574 (2003), 98–104, arXiv: hep-th/0302078 | DOI | MR | Zbl

[21] Dolan B. P., Gupta K. S., Stern A., “Noncommutative {BTZ} black hole and discrete time”, Classical Quantum Gravity, 24 (2007), 1647–1655, arXiv: hep-th/0611233 | DOI | MR | Zbl

[22] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR

[23] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the {P}lanck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl

[24] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in {$\kappa$}-{M}inkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR

[25] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Deformed osciallator algebras and QFT in the $\kappa$-Minkowski spacetime”, Phys. Rev. D, 80 (2009), 025014, 11 pp., arXiv: 0903.2355 | DOI | MR

[26] Gupta K. S., Harikumar E., Jurić T., Meljanac S., Samsarov A., “Effects of noncommutativity on the black hole entropy”, Adv. High Energy Phys., 2014 (2014), 139172, 10 pp., arXiv: 1312.5100 | DOI

[27] Gupta K. S., Meljanac S., Samsarov A., “Quantum statistics and noncommutative black holes”, Phys. Rev. D, 85 (2012), 045029, 8 pp., arXiv: 1108.0341 | DOI

[28] Harikumar E., “Maxwell's equations on the $\kappa$-Minkowski spacetime and electric-magnetic duality”, Europhys. Lett., 90 (2010), 21001, 6 pp., arXiv: 1002.3202 | DOI

[29] Harikumar E., Jurić T., Meljanac S., “Electrodynamics on $\kappa$-Minkowski space-time”, Phys. Rev. D, 84 (2011), 085020, 8 pp., arXiv: 1107.3936 | DOI

[30] Harikumar E., Jurić T., Meljanac S., “Geodesic equation in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 86 (2012), 045002, 8 pp., arXiv: 1203.1564 | DOI

[31] Harikumar E., Sivakumar M., Srinivas N., “{$\kappa$}-deformed {D}irac equation”, Modern Phys. Lett. A, 26 (2011), 1103–1115, arXiv: 0910.5778 | DOI | MR | Zbl

[32] Jurić T., Meljanac S., Štrajn R., “Differential forms and $\kappa$-Minkowski spacetime from extended twist”, Eur. Phys. J. C, 73 (2013), 2472, 8 pp., arXiv: 1211.6612 | DOI

[33] Jurić T., Meljanac S., Štrajn R., “{$\kappa$}-{P}oincaré–{H}opf algebra and {H}opf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI | MR

[34] Jurić T., Meljanac S., Štrajn R., “Twists, realizations and {H}opf algebroid structure of {$\kappa$}-deformed phase space”, Internat. J. Modern Phys. A, 29 (2014), 1450022, 32 pp., arXiv: 1305.3088 | DOI | MR | Zbl

[35] Jurić T., Meljanac S., Štrajn R., “Universal {$\kappa$}-{P}oincaré covariant differential calculus over {$\kappa$}-{M}inkowski space”, Internat. J. Modern Phys. A, 29 (2014), 1450121, 14 pp., arXiv: 1312.2751 | DOI | MR | Zbl

[36] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR

[37] Kim H.-C., Lee Y., Rim C., Yee J. H., “Differential structure on the {$\kappa$}-{M}inkowski spacetime from twist”, Phys. Lett. B, 671 (2009), 398–401, arXiv: 0808.2866 | DOI | MR

[38] Kim H.-C., Lee Y., Rim C., Yee J. H., “Scalar field theory in {$\kappa$}-{M}inkowski spacetime from twist”, J. Math. Phys., 50 (2009), 102304, 12 pp., arXiv: 0901.0049 | DOI | MR | Zbl

[39] Kosiński P., Lukierski J., Maślanka P., “Local {$D=4$} field theory on {$\kappa$}-deformed {M}inkowski space”, Phys. Rev. D, 62 (2000), 025004, 10 pp., arXiv: hep-th/9902037 | DOI | MR

[40] Kovačević D., Meljanac S., “Kappa-{M}inkowski spacetime, kappa-{P}oincaré {H}opf algebra and realizations”, J. Phys. A: Math. Theor., 45 (2012), 135208, 24 pp., arXiv: 1110.0944 | DOI | MR | Zbl

[41] Kovačević D., Meljanac S., Pachoł A., Štrajn R., “Generalized {P}oincaré algebras, {H}opf algebras and {$\kappa$}-{M}inkowski spacetime”, Phys. Lett. B, 711 (2012), 122–127, arXiv: 1202.3305 | DOI | MR

[42] Kovačević D., Meljanac S., Samsarov A., Škoda Z., Hermitian realizations of $\kappa$-Minkowski spacetime, arXiv: 1307.5772

[43] Kowalski-Glikman J., “Introduction to doubly special relativity”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Phys., 669, Springer, Berlin, 2005, 131–159, arXiv: hep-th/0405273 | DOI

[44] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl

[45] Kulish P. P., Lyakhovsky V. D., Mudrov A. I., “Extended {J}ordanian twists for {L}ie algebras”, J. Math. Phys., 40 (1999), 4569–4586, arXiv: math.QA/9806014 | DOI | MR | Zbl

[46] Kupriyanov V. G., “A hydrogen atom on curved noncommutative space”, J. Phys. A: Math. Theor., 46 (2013), 245303, 7 pp., arXiv: 1209.6105 | DOI | MR | Zbl

[47] Kupriyanov V. G., “Quantum mechanics with coordinate dependent noncommutativity”, J. Math. Phys., 54 (2013), 112105, 25 pp., arXiv: 1204.4823 | DOI | MR | Zbl

[48] Lu J.-H., “Hopf algebroids and quantum groupoids”, Internat. J. Math., 7 (1996), 47–70, arXiv: q-alg/9505024 | DOI | MR | Zbl

[49] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl

[50] Lukierski J., Ruegg H., “Quantum {$\kappa$}-{P}oincaré in any dimension”, Phys. Lett. B, 329 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR

[51] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR

[52] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[53] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9404107 | DOI | MR | Zbl

[54] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl

[55] Meljanac S., Samsarov A., “Scalar field theory on {$\kappa$}-{M}inkowski space-time and translation and {L}orentz invariance”, Internat. J. Modern Phys. A, 26 (2011), 1439–1468, arXiv: 1007.3943 | DOI | MR | Zbl

[56] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “{$\kappa$}-{M}inkowski spacetime and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl

[57] Meljanac S., Samsarov A., Štrajn R., “$\kappa$-deformation of phase space; generalized Poincaré algebras and $R$-matrix”, J. High Energy Phys., 2012:8 (2012), 127, 16 pp., arXiv: 1204.4324 | DOI | MR

[58] Meljanac S., Stojić M., “New realizations of {L}ie algebra kappa-deformed {E}uclidean space”, Eur. Phys. J. C, 47 (2006), 531–539, arXiv: hep-th/0605133 | DOI | MR | Zbl

[59] Meljanac S., Škoda Z., Lie algebra type noncommutative phase spaces are Hopf algebroids, arXiv: 1409.8188

[60] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv: 0906.2724

[61] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR

[62] Takeuchi M., “Groups of algebras over {$A\otimes \overline A$}”, J. Math. Soc. Japan, 29 (1977), 459–492 | DOI | MR | Zbl

[63] Xu P., “Quantum groupoids”, Comm. Math. Phys., 216 (2001), 539–581, arXiv: math.QA/9905192 | DOI | MR | Zbl

[64] Young C. A. S., Zegers R., “Covariant particle exchange for {$\kappa$}-deformed theories in {$1+1$} dimensions”, Nuclear Phys. B, 804 (2008), 342–360, arXiv: 0803.2659 | DOI | MR | Zbl

[65] Young C. A. S., Zegers R., “Covariant particle statistics and intertwiners of the {$\kappa$}-deformed {P}oincaré algebra”, Nuclear Phys. B, 797 (2008), 537–549, arXiv: 0711.2206 | DOI | MR | Zbl