@article{SIGMA_2014_10_a105,
author = {Tajron Juri\'c and Domagoj Kova\v{c}evi\'c and Stjepan Meljanac},
title = {$\kappa${-Deformed} {Phase} {Space,} {Hopf} {Algebroid} and {Twisting}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2014},
volume = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/}
}
TY - JOUR AU - Tajron Jurić AU - Domagoj Kovačević AU - Stjepan Meljanac TI - $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting JO - Symmetry, integrability and geometry: methods and applications PY - 2014 VL - 10 UR - http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/ LA - en ID - SIGMA_2014_10_a105 ER -
%0 Journal Article %A Tajron Jurić %A Domagoj Kovačević %A Stjepan Meljanac %T $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting %J Symmetry, integrability and geometry: methods and applications %D 2014 %V 10 %U http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/ %G en %F SIGMA_2014_10_a105
Tajron Jurić; Domagoj Kovačević; Stjepan Meljanac. $\kappa$-Deformed Phase Space, Hopf Algebroid and Twisting. Symmetry, integrability and geometry: methods and applications, Tome 10 (2014). http://geodesic.mathdoc.fr/item/SIGMA_2014_10_a105/
[1] Amelino-Camelia G., “Testable scenario for relativity with minimum-length”, Phys. Lett. B, 510 (2001), 255–263, arXiv: hep-th/0012238 | DOI | MR | Zbl
[2] Amelino-Camelia G., “Relativity in spacetimes with short-distance structure governed by an observer-independent ({P}lanckian) length scale”, Internat. J. Modern Phys. D, 11 (2002), 35–59, arXiv: gr-qc/0012051 | DOI | MR | Zbl
[3] Andrade F. M., Silva E. O., “Effects of quantum deformation on the spin-1/2 {A}haronov–{B}ohm problem”, Phys. Lett. B, 719 (2013), 467–471, arXiv: 1212.1944 | DOI | MR
[4] Andrade F. M., Silva E. O., Ferreira M. M. (Jr.), Rodrigues E. C., “On the {$\kappa$}-{D}irac oscillator revisited”, Phys. Lett. B, 731 (2014), 327–330, arXiv: 1312.2973 | DOI | MR
[5] Arzano M., Marcianò A., “Fock space, quantum fields, and {$\kappa$}-{P}oincaré symmetries”, Phys. Rev. D, 76 (2007), 125005, 14 pp., arXiv: hep-th/0701268 | DOI | MR
[6] Aschieri P., Blohmann C., Dimitrijević M., Meyer F., Schupp P., Wess J., “A gravity theory on noncommutative spaces”, Classical Quantum Gravity, 22 (2005), 3511–3532, arXiv: hep-th/0504183 | DOI | MR | Zbl
[7] Aschieri P., Dimitrijević M., Meyer F., Wess J., “Noncommutative geometry and gravity”, Classical Quantum Gravity, 23 (2006), 1883–1911, arXiv: hep-th/0510059 | DOI | MR | Zbl
[8] Böhm G., Hopf algebroids, arXiv: 0805.3806
[9] Böhm G., Szlachányi K., “Hopf algebroids with bijective antipodes: axioms, integrals, and duals”, J. Algebra, 274 (2004), 708–750, arXiv: math.QA/0302325 | DOI | MR
[10] Bojowald M., Paily G. M., “Deformed general relativity”, Phys. Rev. D, 87 (2013), 044044, 7 pp., arXiv: 1212.4773 | DOI
[11] Borowiec A., Gupta K. S., Meljanac S., Pachoł A., “Constraints on the quantum gravity scale from $\kappa$-Minkowski spacetime”, Europhys. Lett., 92 (2010), 20006, 6 pp., arXiv: 0912.3299 | DOI
[12] Borowiec A., Lukierski J., Pachoł A., “Twisting and $\kappa$-Poincaré”, J. Phys. A: Math. Theor., 47 (2014), 405203, 12 pp., arXiv: 1312.7807 | DOI | MR | Zbl
[13] Borowiec A., Pachoł A., “$\kappa$-Minkowski spacetime as the result of Jordanian twist deformation”, Phys. Rev. D, 79 (2009), 045012, 11 pp., arXiv: 0812.0576 | DOI
[14] Borowiec A., Pachoł A., “{$\kappa$}-{M}inkowski spacetimes and {DSR} algebras: fresh look and old problems”, SIGMA, 6 (2010), 086, 31 pp., arXiv: 1005.4429 | DOI | MR | Zbl
[15] Borowiec A., Pachoł A., “The classical basis for the {$\kappa$}-{P}oincaré {H}opf algebra and doubly special relativity theories”, J. Phys. A: Math. Theor., 43 (2010), 045203, 10 pp., arXiv: 0903.5251 | DOI | MR | Zbl
[16] Borowiec A., Pachoł A., “Unified description for $\kappa$-deformations of orthogonal groups”, Eur. Phys. J. C, 74 (2014), 2812, 9 pp., arXiv: 1311.4499 | DOI
[17] Bu J.-G., Kim H.-C., Yee J. H., “Differential structure on {$\kappa$}-{M}inkowski spacetime realized as module of twisted {W}eyl algebra”, Phys. Lett. B, 679 (2009), 486–490, arXiv: 0903.0040 | DOI | MR
[18] Daszkiewicz M., Lukierski J., Woronowicz M., “{$\kappa$}-deformed statistics and classical four-momentum addition law”, Modern Phys. Lett. A, 23 (2008), 653–665, arXiv: hep-th/0703200 | DOI | MR | Zbl
[19] Daszkiewicz M., Lukierski J., Woronowicz M., “Towards quantum noncommutative {$\kappa$}-deformed field theory”, Phys. Rev. D, 77 (2008), 105007, 10 pp., arXiv: 0708.1561 | DOI | MR
[20] de Boer J., Grassi P. A., van Nieuwenhuizen P., “Non-commutative superspace from string theory”, Phys. Lett. B, 574 (2003), 98–104, arXiv: hep-th/0302078 | DOI | MR | Zbl
[21] Dolan B. P., Gupta K. S., Stern A., “Noncommutative {BTZ} black hole and discrete time”, Classical Quantum Gravity, 24 (2007), 1647–1655, arXiv: hep-th/0611233 | DOI | MR | Zbl
[22] Doplicher S., Fredenhagen K., Roberts J. E., “Spacetime quantization induced by classical gravity”, Phys. Lett. B, 331 (1994), 39–44 | DOI | MR
[23] Doplicher S., Fredenhagen K., Roberts J. E., “The quantum structure of spacetime at the {P}lanck scale and quantum fields”, Comm. Math. Phys., 172 (1995), 187–220, arXiv: hep-th/0303037 | DOI | MR | Zbl
[24] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Twisted statistics in {$\kappa$}-{M}inkowski spacetime”, Phys. Rev. D, 77 (2008), 105010, 6 pp., arXiv: 0802.1576 | DOI | MR
[25] Govindarajan T. R., Gupta K. S., Harikumar E., Meljanac S., Meljanac D., “Deformed osciallator algebras and QFT in the $\kappa$-Minkowski spacetime”, Phys. Rev. D, 80 (2009), 025014, 11 pp., arXiv: 0903.2355 | DOI | MR
[26] Gupta K. S., Harikumar E., Jurić T., Meljanac S., Samsarov A., “Effects of noncommutativity on the black hole entropy”, Adv. High Energy Phys., 2014 (2014), 139172, 10 pp., arXiv: 1312.5100 | DOI
[27] Gupta K. S., Meljanac S., Samsarov A., “Quantum statistics and noncommutative black holes”, Phys. Rev. D, 85 (2012), 045029, 8 pp., arXiv: 1108.0341 | DOI
[28] Harikumar E., “Maxwell's equations on the $\kappa$-Minkowski spacetime and electric-magnetic duality”, Europhys. Lett., 90 (2010), 21001, 6 pp., arXiv: 1002.3202 | DOI
[29] Harikumar E., Jurić T., Meljanac S., “Electrodynamics on $\kappa$-Minkowski space-time”, Phys. Rev. D, 84 (2011), 085020, 8 pp., arXiv: 1107.3936 | DOI
[30] Harikumar E., Jurić T., Meljanac S., “Geodesic equation in $\kappa$-Minkowski spacetime”, Phys. Rev. D, 86 (2012), 045002, 8 pp., arXiv: 1203.1564 | DOI
[31] Harikumar E., Sivakumar M., Srinivas N., “{$\kappa$}-deformed {D}irac equation”, Modern Phys. Lett. A, 26 (2011), 1103–1115, arXiv: 0910.5778 | DOI | MR | Zbl
[32] Jurić T., Meljanac S., Štrajn R., “Differential forms and $\kappa$-Minkowski spacetime from extended twist”, Eur. Phys. J. C, 73 (2013), 2472, 8 pp., arXiv: 1211.6612 | DOI
[33] Jurić T., Meljanac S., Štrajn R., “{$\kappa$}-{P}oincaré–{H}opf algebra and {H}opf algebroid structure of phase space from twist”, Phys. Lett. A, 377 (2013), 2472–2476, arXiv: 1303.0994 | DOI | MR
[34] Jurić T., Meljanac S., Štrajn R., “Twists, realizations and {H}opf algebroid structure of {$\kappa$}-deformed phase space”, Internat. J. Modern Phys. A, 29 (2014), 1450022, 32 pp., arXiv: 1305.3088 | DOI | MR | Zbl
[35] Jurić T., Meljanac S., Štrajn R., “Universal {$\kappa$}-{P}oincaré covariant differential calculus over {$\kappa$}-{M}inkowski space”, Internat. J. Modern Phys. A, 29 (2014), 1450121, 14 pp., arXiv: 1312.2751 | DOI | MR | Zbl
[36] Kempf A., Mangano G., “Minimal length uncertainty relation and ultraviolet regularization”, Phys. Rev. D, 55 (1997), 7909–7920, arXiv: hep-th/9612084 | DOI | MR
[37] Kim H.-C., Lee Y., Rim C., Yee J. H., “Differential structure on the {$\kappa$}-{M}inkowski spacetime from twist”, Phys. Lett. B, 671 (2009), 398–401, arXiv: 0808.2866 | DOI | MR
[38] Kim H.-C., Lee Y., Rim C., Yee J. H., “Scalar field theory in {$\kappa$}-{M}inkowski spacetime from twist”, J. Math. Phys., 50 (2009), 102304, 12 pp., arXiv: 0901.0049 | DOI | MR | Zbl
[39] Kosiński P., Lukierski J., Maślanka P., “Local {$D=4$} field theory on {$\kappa$}-deformed {M}inkowski space”, Phys. Rev. D, 62 (2000), 025004, 10 pp., arXiv: hep-th/9902037 | DOI | MR
[40] Kovačević D., Meljanac S., “Kappa-{M}inkowski spacetime, kappa-{P}oincaré {H}opf algebra and realizations”, J. Phys. A: Math. Theor., 45 (2012), 135208, 24 pp., arXiv: 1110.0944 | DOI | MR | Zbl
[41] Kovačević D., Meljanac S., Pachoł A., Štrajn R., “Generalized {P}oincaré algebras, {H}opf algebras and {$\kappa$}-{M}inkowski spacetime”, Phys. Lett. B, 711 (2012), 122–127, arXiv: 1202.3305 | DOI | MR
[42] Kovačević D., Meljanac S., Samsarov A., Škoda Z., Hermitian realizations of $\kappa$-Minkowski spacetime, arXiv: 1307.5772
[43] Kowalski-Glikman J., “Introduction to doubly special relativity”, Planck Scale Effects in Astrophysics and Cosmology, Lecture Notes in Phys., 669, Springer, Berlin, 2005, 131–159, arXiv: hep-th/0405273 | DOI
[44] Kowalski-Glikman J., Nowak S., “Doubly special relativity theories as different bases of {$\kappa$}-{P}oincaré algebra”, Phys. Lett. B, 539 (2002), 126–132, arXiv: hep-th/0203040 | DOI | MR | Zbl
[45] Kulish P. P., Lyakhovsky V. D., Mudrov A. I., “Extended {J}ordanian twists for {L}ie algebras”, J. Math. Phys., 40 (1999), 4569–4586, arXiv: math.QA/9806014 | DOI | MR | Zbl
[46] Kupriyanov V. G., “A hydrogen atom on curved noncommutative space”, J. Phys. A: Math. Theor., 46 (2013), 245303, 7 pp., arXiv: 1209.6105 | DOI | MR | Zbl
[47] Kupriyanov V. G., “Quantum mechanics with coordinate dependent noncommutativity”, J. Math. Phys., 54 (2013), 112105, 25 pp., arXiv: 1204.4823 | DOI | MR | Zbl
[48] Lu J.-H., “Hopf algebroids and quantum groupoids”, Internat. J. Math., 7 (1996), 47–70, arXiv: q-alg/9505024 | DOI | MR | Zbl
[49] Lukierski J., Nowicki A., Ruegg H., “New quantum {P}oincaré algebra and {$\kappa$}-deformed field theory”, Phys. Lett. B, 293 (1992), 344–352 | DOI | MR | Zbl
[50] Lukierski J., Ruegg H., “Quantum {$\kappa$}-{P}oincaré in any dimension”, Phys. Lett. B, 329 (1994), 189–194, arXiv: hep-th/9310117 | DOI | MR
[51] Lukierski J., Ruegg H., Nowicki A., Tolstoy V. N., “{$q$}-deformation of {P}oincaré algebra”, Phys. Lett. B, 264 (1991), 331–338 | DOI | MR
[52] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[53] Majid S., Ruegg H., “Bicrossproduct structure of {$\kappa$}-{P}oincaré group and non-commutative geometry”, Phys. Lett. B, 334 (1994), 348–354, arXiv: hep-th/9404107 | DOI | MR | Zbl
[54] Meljanac S., Krešić-Jurić S., Stojić M., “Covariant realizations of kappa-deformed space”, Eur. Phys. J. C, 51 (2007), 229–240, arXiv: hep-th/0702215 | DOI | MR | Zbl
[55] Meljanac S., Samsarov A., “Scalar field theory on {$\kappa$}-{M}inkowski space-time and translation and {L}orentz invariance”, Internat. J. Modern Phys. A, 26 (2011), 1439–1468, arXiv: 1007.3943 | DOI | MR | Zbl
[56] Meljanac S., Samsarov A., Stojić M., Gupta K. S., “{$\kappa$}-{M}inkowski spacetime and the star product realizations”, Eur. Phys. J. C, 53 (2008), 295–309, arXiv: 0705.2471 | DOI | MR | Zbl
[57] Meljanac S., Samsarov A., Štrajn R., “$\kappa$-deformation of phase space; generalized Poincaré algebras and $R$-matrix”, J. High Energy Phys., 2012:8 (2012), 127, 16 pp., arXiv: 1204.4324 | DOI | MR
[58] Meljanac S., Stojić M., “New realizations of {L}ie algebra kappa-deformed {E}uclidean space”, Eur. Phys. J. C, 47 (2006), 531–539, arXiv: hep-th/0605133 | DOI | MR | Zbl
[59] Meljanac S., Škoda Z., Lie algebra type noncommutative phase spaces are Hopf algebroids, arXiv: 1409.8188
[60] Schupp P., Solodukhin S., Exact black hole solutions in noncommutative gravity, arXiv: 0906.2724
[61] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR
[62] Takeuchi M., “Groups of algebras over {$A\otimes \overline A$}”, J. Math. Soc. Japan, 29 (1977), 459–492 | DOI | MR | Zbl
[63] Xu P., “Quantum groupoids”, Comm. Math. Phys., 216 (2001), 539–581, arXiv: math.QA/9905192 | DOI | MR | Zbl
[64] Young C. A. S., Zegers R., “Covariant particle exchange for {$\kappa$}-deformed theories in {$1+1$} dimensions”, Nuclear Phys. B, 804 (2008), 342–360, arXiv: 0803.2659 | DOI | MR | Zbl
[65] Young C. A. S., Zegers R., “Covariant particle statistics and intertwiners of the {$\kappa$}-deformed {P}oincaré algebra”, Nuclear Phys. B, 797 (2008), 537–549, arXiv: 0711.2206 | DOI | MR | Zbl